情境觀察將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉,使點D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是 _________ ,∠CAC′= _________ °.
問題探究
如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關系,并證明你的結論.
拓展延伸
如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H.若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關系,并說明理由.
①AD,90 ②△AFQ≌△CAG ③HE=HF(具體過程見解析)
解析試題分析:①觀察圖形即可發(fā)現(xiàn)△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB,
∴∠CAC′=180°﹣∠C′AD﹣∠CAB=90°;
故答案為:AD,90.
②∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°,
∴∠AFQ=∠CAG,同理∠ACG=∠FAQ,
又∵AF=AC,
∴△AFQ≌△CAG,
∴FQ=AG,
同理EP=AG,
∴FQ=EP.
③HE=HF.
理由:過點E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q.
∵四邊形ABME是矩形,
∴∠BAE=90°,
∴∠BAG+∠EAP=90°,
又AG⊥BC,
∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
∵∠AGB=∠EPA=90°,
∴△ABG∽△EAP,
∴AG:EP=AB:EA.
同理△ACG∽△FAQ,
∴AG:FQ=AC:FA.
∵AB=k•AE,AC=k•AF,
∴AB:EA=AC:FA=k,
∴AG:EP=AG:FQ.
∴EP=FQ.
又∵∠EHP=∠FHQ,∠EPH=∠FQH,
∴Rt△EPH≌Rt△FQH(AAS).
∴HE=HF.
考點:相似三角形的判定與性質;全等三角形的判定與性質;等腰直角三角形;矩形的性質.
點評:本題考查了全等三角形的證明,考查了全等三角形對應邊相等的性質,考查了三角形內(nèi)角和為180°的性質,考查了等腰三角形腰長相等的性質,本題中求證△AFQ≌△CAG是解題的關鍵.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
1.情境觀察 將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉,使點D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是 ,∠CAC′= °.
2.問題探究 如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關系,并證明你的結論.
3.拓展延伸 如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB= k AE,AC= k AF,試探究HE與HF之間的數(shù)量關系,并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆浙江省椒江區(qū)九年級二模數(shù)學試卷(帶解析) 題型:解答題
【小題1】情境觀察 將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉,使點D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是 ,∠CAC′= °.
【小題2】問題探究 如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關系,并證明你的結論.
【小題3】拓展延伸 如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB=" k" AE,AC=" k" AF,試探究HE與HF之間的數(shù)量關系,并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆湖南省九年級下學期第一次月考考試數(shù)學卷 題型:選擇題
(本題滿分10分)
情境觀察
將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉,使點D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是 ▲ ,∠CAC′= ▲ °.
問題探究
如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分
別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等
腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為
P、Q. 試探究EP與FQ之間的數(shù)量關系,并證明你的結論.
拓展延伸
如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB= k AE,AC= k AF,試探究HE與HF之間的數(shù)量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com