(2012•安徽)如圖,點A、B、C、D在⊙O上,O點在∠D的內(nèi)部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=
60
60
°.
分析:由四邊形OABC為平行四邊形,根據(jù)平行四邊形對角相等,即可得∠B=∠AOC,由圓周角定理,可得∠AOC=2∠ADC,又由內(nèi)接四邊形的性質(zhì),可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后又三角形外角的性質(zhì),即可求得∠OAD+∠OCD的度數(shù).
解答:解:連接DO并延長,
∵四邊形OABC為平行四邊形,
∴∠B=∠AOC,
∵∠AOC=2∠ADC,
∴∠B=2∠ADC,
∵四邊形ABCD是⊙O的內(nèi)接四邊形,
∴∠B+∠ADC=180°,
∴3∠ADC=180°,
∴∠ADC=60°,
∴∠B=∠AOC=120°,
∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,
∴∠OAD+∠OCD=(∠1+∠2)-(∠ADO+∠CDO)=∠AOC-∠ADC=120°-60°=60°.
故答案為:60°.
點評:此題考查了圓周角定理、圓的內(nèi)接四邊形的性質(zhì)、平行四邊形的性質(zhì)以及三角形外角的性質(zhì).此題難度適中,注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•安徽)如圖,P是矩形ABCD內(nèi)的任意一點,連接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,設(shè)它們的面積分別是S1、S2、S3、S4,給出如下結(jié)論:
①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,則S4=2S2;④若S1=S2,則P點在矩形的對角線上.
其中正確的結(jié)論的序號是
②和④
②和④
(把所有正確結(jié)論的序號都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•安徽)如圖,排球運(yùn)動員站在點O處練習(xí)發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m.
(1)當(dāng)h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•安徽)如圖,A點在半徑為2的⊙O上,過線段OA上的一點P作直線l,與⊙O過A點的切線交于點B,且∠APB=60°,設(shè)OP=x,則△PAB的面積y關(guān)于x的函數(shù)圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•安徽)如圖1,在△ABC中,D、E、F分別為三邊的中點,G點在邊AB上,△BDG與四邊形ACDG的周長相等,設(shè)BC=a、AC=b、AB=c.
(1)求線段BG的長;
(2)求證:DG平分∠EDF;
(3)連接CG,如圖2,若△BDG與△DFG相似,求證:BG⊥CG.

查看答案和解析>>

同步練習(xí)冊答案