【題目】已知函數(shù).
(1)請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫出該函數(shù)的圖象,
(2)若點(diǎn)在該函數(shù)圖象上,且當(dāng)時(shí),,求的取值范圍.
【答案】(1)見詳解;(2)5≤k≤8
【解析】
(1)根據(jù)直線的畫法作圖即可,注意自變量的取值范圍;
(2)根據(jù)在圖像中找出點(diǎn)P的位置,從而得到k的取值范圍
(1)如圖所示,
(2)∵點(diǎn)在該函數(shù)圖象上,且
∴
由圖像可知y≤2,且當(dāng)x=1時(shí),y=2
將y=-5代入y=-x+3得x=8,
將y=-5代入y=x-3得x=-2,
∴-2≤x≤8
∵時(shí),b的范圍是,
∴符合題意的圖像左端點(diǎn)為(-2,-5),也包括(1,2),
∵當(dāng)時(shí),
∴符合題意的圖像包括,及兩部分
將y=-2代入y=-x+3得x=5,
∴k≥5,
∴k的取值范圍為:5≤k≤8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小澤和小超分別用擲A、B兩枚骰子的方法來確定P(x,y)的位置,她們規(guī)定:小澤擲得的點(diǎn)數(shù)為x,小超擲得的點(diǎn)數(shù)為,那么,她們各擲一次所確定的點(diǎn)落在已知直線y=-2x+6上的概率為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長(zhǎng)為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時(shí),才能避免滑坡危險(xiǎn),學(xué)校為了消除安全隱患,決定對(duì)斜坡CD進(jìn)行改造,在保持坡腳C不動(dòng)的情況下,學(xué)校至少要把坡頂D向后水平移動(dòng)多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))
(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場(chǎng)平時(shí)都以同樣價(jià)格出售相同的商品,“五一”期間兩家商場(chǎng)都讓利酬賓.其中甲商場(chǎng)所有商品直接打折銷售,乙商場(chǎng)在購買一定數(shù)額商品后,超過部分打折售.設(shè)商品的原價(jià)為元,購買商品后實(shí)付金額為元,與之間的函數(shù)關(guān)系如圖所示:
(1)求的值;
(2)說出甲乙兩家商場(chǎng)的具體銷售方式;
(3)“五一”期間,選擇哪家商場(chǎng)去購物更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境
小明和小麗共同探究一道數(shù)學(xué)題:
如圖①,在△ABC中,點(diǎn)D是邊BC的中點(diǎn),∠BAD=65°,∠DAC=50°,AD=2,
求AC.
探索發(fā)現(xiàn)
小明的思路是:延長(zhǎng)AD至點(diǎn)E,使DE=AD,構(gòu)造全等三角形.
小麗的思路是:過點(diǎn)C作CE∥AB,交AD的延長(zhǎng)線于點(diǎn)E,構(gòu)造全等三角形.
選擇小明、小麗其中一人的方法解決問題情境中的問題.
類比應(yīng)用
如圖②,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)O是BD的中點(diǎn),
AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,則BC的長(zhǎng)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4m時(shí),拱頂(拱橋洞的最高點(diǎn))離水面2m,當(dāng)水面下降1m時(shí),水面的寬度為( )
A.3 B.2 C.3 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC 中, ,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△繞點(diǎn)順時(shí)針旋轉(zhuǎn)90后,得到△,連接.列結(jié)論:
①△ADC≌△AFB;②△ ≌△;③△≌△;④
其中正確的是( )
A. ②④ B. ①④ C. ②③ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年全球葵花籽產(chǎn)量約為4200萬噸,比2014年上漲2.1%,某企業(yè)加工并銷售葵花籽,假設(shè)銷售量與加工量相等,在圖中,線段AB、折線CDB分別表示葵花籽每千克的加工成本y1(元)、銷售價(jià)y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系;
(1)請(qǐng)你解釋圖中點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義;
(2)求線段AB所表示的y1與x之間的函數(shù)解析式;
(3)當(dāng)0<x≤90時(shí),求該葵花籽的產(chǎn)量為多少時(shí),該企業(yè)獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
如圖,把沿直線平行移動(dòng)線段的長(zhǎng)度,可以變到的位置;
如圖,以為軸,把翻折,可以變到的位置;
如圖,以點(diǎn)為中心,把旋轉(zhuǎn),可以變到的位置.
像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問題:
①在圖中,可以通過平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使變到的位置;
②指圖中線段與之間的關(guān)系,為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com