【題目】如圖,已知ABC是等邊三角形,D、F分別為BC、AB邊上的點(diǎn),AF=BD,AD為邊作等邊ΔADE.

(1)求證:AE=CF;

(2)求∠BEF的度數(shù).

【答案】(1)見解析;(2)BEF=60°

【解析】

1)由ΔABC是等邊三角形,可知AC=AB,∠CAB=ABC=60°,又由AF=BD,根據(jù)SAS定理得出△ACFΔBAD,從而得出CF=AD.又由△ADE是等邊三角形,AE=AD,進(jìn)而得出AE=CF.

2)由ABCAED都是等邊三角形,得出AB=AC,AE=AD,∠BAC=EAD=60°,進(jìn)而得出∠BAE=CAD,SAS定理判定ΔABE≌△ACD,得出BE=CD,ABE=ACD,又由AB=BC,AF=BD,得出BF=DC,進(jìn)而得出BE=BF,又由∠EBF=ACD=60°,即可得出∠BEF=60°.

(1) 證明:∵ΔABC是等邊三角形,

AC=AB,∠CAB=ABC=60°

又∵AF=BD

∴△ACFΔBAD(SAS)

CF=AD.

∵△ADE是等邊三角形,

AE=AD,

AE=CF.

(2)ABC和△AED都是等邊三角形,

AB=AC,AE=AD,∠BAC=EAD=60°,

∴∠BAE=CAD,

ΔABE≌△ACD(SAS)

BE=CD,ABE=ACD,

又∵AB=BC,AF=BD,

BF=DC,

BE=BF,

又∵∠EBF=ACD=60°,

BEF為等邊三角形.

∴∠BEF=60°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在數(shù)學(xué)小論文評比活動中,共征集到論文100篇,對論文評比的分?jǐn)?shù)(分?jǐn)?shù)為整數(shù))整理后,分組畫出頻數(shù)分布直方圖(如圖),已知從左到右5個小長方形的高的比為l:3:7:6:3,那么在這次評比中被評為優(yōu)秀的論文(分?jǐn)?shù)大于或等于80分為優(yōu)秀)有____篇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18 ℃的條件下生長最快的新品種.如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線y=的一部分.請根據(jù)圖中信息解答下列問題:

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18 ℃的時間有多少小時?

(2)求k的值;

(3)當(dāng)x=16時,大棚內(nèi)的溫度約為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著越來越多年輕家長對低幼階段孩子英語口語的重視,某APP順勢推出了北美外教在線授課系列課程,提供A課程、B課程兩種不同課程供家長選擇.已知購買A課程”3課時與B課程”5課時共需付款410元,購買A課程”5課時與B課程”3課時共需付款470元.

1)請問購買A課程”1課時多少元?購買B課程”1課時多少元?

2)根據(jù)市場調(diào)研,APP銷售A課程”1課時獲利25元,銷售B課程”1課時獲利20元,臨近春節(jié),小融計劃用不低于3000元且不超過3600元的壓歲錢購買兩種課程共60課時,請問購買A課程多少課時才使得APP的獲利最高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB90°,∠A30°,BC3cm,動點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒2cm的速度向終點(diǎn)B運(yùn)動;同時,動點(diǎn)Q從點(diǎn)B出發(fā)沿BC力向以每秒1cm的速度向終點(diǎn)C運(yùn)動,將PQC翻折,點(diǎn)P的對應(yīng)點(diǎn)為R,設(shè)點(diǎn)Q運(yùn)動的時間為t秒,若四邊形PCRQ為菱形,則t的值為( 。

A. B. 2C. 1D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)A、D為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)M、N;第二步,連結(jié)MN,分別交ABAC于點(diǎn)E、F;第三步,連結(jié)DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).

(1)以原點(diǎn)O為位似中心,相似比為12,在y軸的左側(cè),畫出ABC放大后的圖形A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);

(2)若點(diǎn)D(a,b)在線段AB上,請直接寫出經(jīng)過(1)的變化后點(diǎn)D的對應(yīng)點(diǎn)D1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解不等式24x-1≥5x-8,并把它的解集在數(shù)軸上表示出來.

2)如圖,在平面直角坐標(biāo)系xOy中,ABC的三個頂點(diǎn)的坐標(biāo)分別是A-30),B-6,-2C-2,-5).將ABC向上平移3個單位長度,再向右平移5個單位長度,得到A1B1C1

①在平面直角坐標(biāo)系xOy中畫出A1B1C1

②求A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象經(jīng)過點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的縱坐標(biāo)為1,點(diǎn)C的坐標(biāo)為(2,0)

(1)求該反比例函數(shù)的表達(dá)式;

(2)求直線BC的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案