【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,D為AC邊上的中點(diǎn),過D點(diǎn)作DE⊥DF,交AB于E,交BC為F,
(1)求證:BE=CF;
(2)若AE=4,F(xiàn)C=3,求EF的長(zhǎng).

【答案】
(1)解:連接BD.

∵D是AC中點(diǎn),

∴∠ABD=∠CBD=45°,BD=AD=CD,BD⊥AC

∵∠EDB+∠FDB=90°,∠FDB+∠CDF=90°,

∴∠EDB=∠CDF,

在△BED和△CFD中,

∴△BED≌△CFD(ASA),

∴BE=CF


(2)解:∵AB=BC,BE=CF=3,

∴AE=BF=4

在RT△BEF中,EF= =5


【解析】(1)連接BD,根據(jù)的等腰直角三角形的性質(zhì)證明△BED≌△CFD就可以得出AE=BF,BE=CF;(2)由AE=BF,F(xiàn)C=BE就可以求得EF的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌商品,按標(biāo)價(jià)九折出售,仍可獲得20%的利潤(rùn),若該商品標(biāo)價(jià)為28元,則商品的進(jìn)價(jià)為(
A.21元
B.19.8元
C.22.4元
D.25.2元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算中,不正確的是(  )

A. -3a2b·(-2ab2)=6a3b3

B. -0.1m·(10mn)2=-10m3n2

C. 2x3·3x3=6x6

D. 10x2·2x5=20x10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AB的垂直平分線交邊AB于D點(diǎn),交邊AC于E點(diǎn),若△ABC與△EBC的周長(zhǎng)分別是40cm,24cm,則AB=cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x,y(x≠0且x≠1,y≠0且y≠1)的單項(xiàng)式x4ya與(-xby)2的乘積為x16y4,求ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=2x+1經(jīng)過點(diǎn)(0,a),則a=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線l與直線m的圖象關(guān)于y軸對(duì)稱,若直線m的表達(dá)式為y3x2,則直線l的表達(dá)式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,則∠AOF的度數(shù)為(

A.120°
B.125°
C.130°
D.135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸、軸分別交于點(diǎn)B、 A,點(diǎn)D、E分別是AO、AB的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng),速度為1cm/s;與此同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為.

(1)分別寫出點(diǎn)P和Q坐標(biāo)(用含t的代數(shù)式表示);

(2)①當(dāng)點(diǎn)Q在BE之間運(yùn)動(dòng)時(shí),設(shè)五邊形PQBOD的面積為(cm2),求y與t之間的函數(shù)關(guān)系式;

②在①的情況下,是否存在某一時(shí)刻t,使PQ分四邊形BODE兩部分的面積之比為S△PQE:S五邊形PQBOD=1:29?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由;

(3)以P為圓心、PQ長(zhǎng)為半徑作圓,請(qǐng)問:在整個(gè)運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),⊙P能與△ABO的一邊相切?

查看答案和解析>>

同步練習(xí)冊(cè)答案