【題目】某水果超市第一次花費2200元購進甲、乙兩種水果共350千克.已知甲種水果進價每千克5元,售價每千克10元;乙種水果進價每千克8元,售價每千克12元.
(1)第一次購進的甲、乙兩種水果各多少千克?
(2)由于第一次購進的水果很快銷售完畢,超市決定再次購進甲、乙兩種水果,它們的進價不變.若要本次購進的水果銷售完畢后獲得利潤2090元,甲種水果進貨量在第一次進貨量的基礎上增加了2m%,售價比第一次提高了m%;乙種水果的進貨量為100千克,售價不變.求m的值.
【答案】(1)第一次購進甲種水果200千克,購進乙種水果150千克;(2)m的值為15.
【解析】
(1)設第一次購進甲種水果x千克,購進乙種水果y千克,根據(jù)該超市花費2200元購進甲、乙兩種水果共350千克,即可得出關于x,y的二元一次方程組,解之即可得出結論;
(2)根據(jù)總利潤=每千克的利潤×銷售數(shù)量,即可得出關于m的一元二次方程,解之取其正值即可得出結論.
(1)設第一次購進甲種水果x千克,購進乙種水果y千克,
依題意,得:,
解得:.
答:第一次購進甲種水果200千克,購進乙種水果150千克.
(2)依題意,得:[10(1+m%)﹣5]×200(1+2m%)+(12﹣8)×100=2090,
整理,得:0.4m2+40m﹣690=0,
解得:m1=15,m2=﹣115(不合題意,舍去).
答:m的值為15.
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=6,AD=8,點E是邊AD上一點,EM⊥BC交AB于點M,點N在射線MB上,且AE是AM和AN的比例中項.
(1)如圖1,求證:∠ANE=∠DCE;
(2)如圖2,當點N在線段MB之間,聯(lián)結AC,且AC與NE互相垂直,求MN的長;
(3)連接AC,如果△AEC與以點E、M、N為頂點所組成的三角形相似,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.求作⊙O,使得點O在邊AB上,且⊙O經過B、D兩點;并證明AC與⊙O相切.(尺規(guī)作圖,保留作圖痕跡,不寫作法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點的坐標為(,),點的坐標為(,),點C的坐標為(,).
(1)在圖中作出的外接圓(利用格圖確定圓心);
(2)圓心坐標為 _____;外接圓半徑為 _____;
(3)若在軸的正半軸上有一點,且,則點的坐標為 _____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A,點C在反比例函數(shù)y=(k>0,x>0)的圖象上,AB⊥x軸于點B,OC交AB于點D,若CD=OD,則△AOD與△BCD的面積比為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將正六邊形ABCDEF放置在直角坐標系內,A(﹣2,0),點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,經過2020次翻轉之后,點C的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為( 。
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】快車從甲地駛向乙地,慢車從乙地駛向甲地,兩車同時出發(fā)并且在同一條公路上勻速行駛,途中快車休息1.5小時,慢車沒有休息.設慢車行駛的時間為x小時,快車行駛的路程為千米,慢車行駛的路程為千米.如圖中折線OAEC表示與x之間的函數(shù)關系,線段OD表示與x之間的函數(shù)關系.
請解答下列問題:
(1)求快車和慢車的速度;
(2)求圖中線段EC所表示的與x之間的函數(shù)表達式;
(3)線段OD與線段EC相交于點F,直接寫出點F的坐標,并解釋點F的實際意義.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的與的部分對應值如表:
下列結論:①拋物線的開口向上;②拋物線的對稱軸為直線;③當時,;④拋物線與軸的兩個交點間的距離是;⑤若是拋物線上兩點,則;⑥. 其中正確的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com