【題目】如圖所示,在平面直角坐標中,四邊形OABC是梯形,且AB = OC = 4,CB∥OA,OA = 7,∠COA = 60°,點P為x軸上的—個動點,點P不與點0、點A重合.連結(jié)CP,過點P作PD交AB于點D,
(1)求點B的坐標;
(2)當點P運動什么位置時,使得∠CPD =∠OAB,且,求這時點P的坐標;
(3)當點P運動什么位置時,△OCP為等腰三角形,直接寫出這時點P的坐標。
【答案】(1) ; (2) ;(3).
【解析】
(1)過點B作于點Q,由等腰梯形可得∠BAO=∠COA=30°,再由30°角三角函數(shù)即可求解B點坐標;
(2)由三角形外角和可知∠CPA=∠OCP+∠COP,再由∠CPD =∠OAB可得∠OCP=∠APD,結(jié)合∠DAP=∠COP=60°可證明∽,利用相似比可求解P點坐標;
(3)分點P在O點右側(cè)和左側(cè)兩種情況分別討論.
解:(1)過點B作于點Q,
則,在中,
,,則,
故B點坐標為;
(2)
∽
即
(3)當點P在O點右側(cè)時,△OCP為等邊三角形,OP=4,則P(4,0);當點P在O點左側(cè)時,OP=OC=4,則P(-4,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某海防哨所發(fā)現(xiàn)在它的北偏西,距離為的處有一艘船,該船向正東方向航行,經(jīng)過到達哨所東北方向的處,則該船的航速為每小時___.(精確到)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為24的等邊三角形ABC中,M是高CH所在直線上的一個動點,連結(jié)MB,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連結(jié)HN.則在點M運動過程中,線段HN長度的最小值是( 。
A. 12B. 6C. 3D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點坐標如下表:
(1)將下表補充完整,并在直角坐標系中,畫出△A′B′C′;
(x,y) | (2x,2y) |
A(2,1) | A′(4,2) |
B(4,3) | B′( ) |
C(5,1) | C′( ) |
(2)觀察兩個三角形,可知△ABC∽△A′B′C′兩個三角形的是以原點為位似中心的位似三角形,△ABC與△A′B′C′的位似比為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在農(nóng)業(yè)技術(shù)部門指導下,小明家今年種植的獼猴桃喜獲豐收.去年獼猴桃的收入結(jié)余12000元,今年獼猴桃的收入比去年增加了20%,支出減少10%,結(jié)余今年預計比去年多11400元.請計算:
(1)今年結(jié)余 元;
(2)若設去年的收入為元,支出為元,則今年的收入為 元,支出為 元(以上兩空用含、的代數(shù)式表示)
(3)列方程組計算小明家今年種植獼猴桃的收入和支出.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某地有一座圓弧形的拱橋,橋下水面寬為8米(即AB=8米),拱頂高出水面為2米(即CD=2米).
(1)求這座拱橋所在圓的半徑.
(2)現(xiàn)有一艘寬6米,船艙頂部為正方形并高出水面1.5米的貨船要經(jīng)過這里,此時貨船能順利通過這座拱橋嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,點D為的中點,直角繞點D旋轉(zhuǎn),,分別與邊,交于E,F兩點,下列結(jié)論:①是等腰直角三角形;②;③;④,其中正確結(jié)論是( ).
A.①②④B.②③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.
(1)求證:DE是⊙O的切線;
(2)若AD=16,DE=10,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com