【題目】已知:如圖,在平面直角坐標系xOy中,直線ABx軸交于點A(2,0),與反比例函數(shù)在第一象限內的圖象的交于點B(2n),連接BO,若SAOB4

(1)求該反比例函數(shù)的解析式和直線AB的解析式;

(2)若直線AB與雙曲線的另一交點為D點,求△ODB的面積.

【答案】(1)反比例函數(shù)的解析式為y,直線AB的解析式為yx+2;(2)6

【解析】

1)先根據(jù)SAOB4求出點B的坐標,利用待定系數(shù)法求反比例函數(shù)的解析式和直線AB的解析式;

2)根據(jù)方程組可得點D的坐標,由面積和可得結論.

(1)由題意得:SAOB|xA|yB,

×2×yB4

yB4,

B(2,4),

設反比例函數(shù)的解析式為:y,

把點B的坐標代入得:k2×48,

y,

設直線AB的解析式為:yax+b

A(2,0)、B(2,4)代入得:,

解得:,

yx+2

(2)由題意得:x+2,

解得:x1=﹣4x22,

D(4,﹣2)

SODBSOAD+SOAB×2×2+46

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,的頂點坐標分別是,對于的橫長、縱長、縱橫比給出如下定義:

中的最大值,稱為的橫長,記作;將中的最大值,稱為的縱長,記作;將叫做的縱橫比,記作

例如:如圖的三個頂點的坐標分別是,則

所以

如圖2,點,

,

的縱橫比______

的縱橫比______;

F在第四象限,若的縱橫比為1,寫出一個符合條件的點F的坐標;

M是雙曲線上一個動點,若的縱橫比為1,求點M的坐標;

如圖3,點為圓心,1為半徑,點N上一個動點,直接寫出的縱橫比的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y(x0)的圖象經(jīng)過AO的中點C,交AB于點D,且AD3

(1)設點A的坐標為(44)則點C的坐標為   ;

(2)若點D的坐標為(4,n)

求反比例函數(shù)y的表達式;

求經(jīng)過C,D兩點的直線所對應的函數(shù)解析式;

(3)(2)的條件下,設點E是線段CD上的動點(不與點CD重合),過點E且平行y軸的直線l與反比例函數(shù)的圖象交于點F,求△OEF面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;

(3)將AOB繞平面內某點M旋轉90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線y=x2+(2m1)x2m(<m),直線l的解析式為y=(k1)x+2mk+2.

(1)若拋物線與y軸交點的縱坐標為-3,試求拋物線的頂點坐標;

(2)試證明:拋物線與直線l必有兩個交點;

(3)若拋物線經(jīng)過點(x0,-4),且對于任意實數(shù)x,不等式x2+(2m1)x2m4都成立; k2≤xk時,批物線的最小值為2k+1. 求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,RtABC中,∠ACB90°,AC5BC12,點D在邊AB上,以AD為直徑的O,與邊BC有公共點E,則AD的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖示二次函數(shù)y=ax2+bx+c的對稱軸在y軸的右側,其圖象與x軸交于點A(﹣1,0)與點C(x2,0),且與y軸交于點B(0,﹣2),小強得到以下結論:0a2;﹣1b0;c=﹣1;|a|=|b|時x2﹣1;以上結論中正確結論的序號為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,菱形ABOC,其一邊OBx軸上,將菱形ABOC繞點B順時針旋轉75°FBDE的位置,若BO2,∠A120°,則點E的坐標為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的大致圖象如圖所示,頂點坐標為(﹣2,﹣9a),下列結論:①a3b+2c0;②3a2bc0;③若方程ax+5)(x1)=﹣1有兩個根x1x2,且x1x2,則﹣5x1x21;④若方程|ax2+bx+c|1有四個根,則這四個根的和為﹣8.其中正確的結論有( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習冊答案