【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.

(1)求證:DE是⊙O的切線.

(2)求DE的長.

【答案】(1)詳見解析;(24.

【解析】

試題(1)連結(jié)OD,由AD平分∠BAC,OA=OD,可證得∠ODA=∠DAE,由平行線的性質(zhì)可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE⊙O的切線;(2)過點OOF⊥AC于點F,由垂徑定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四邊形OFED是矩形,即可得DE=OF=4.

試題解析:

1)連結(jié)OD,

∵AD平分∠BAC,

∴∠DAE=∠DAB

∵OA=OD,

∴∠ODA=∠DAO,

∴∠ODA=∠DAE,

∴OD∥AE,

∵DE⊥AC

∴OE⊥DE

∴DE⊙O的切線;

2)過點OOF⊥AC于點F,

∴AF=CF=3,

∴OF=,

∵∠OFE=∠DEF=∠ODE=90°

四邊形OFED是矩形,

∴DE=OF=4.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC內(nèi)接于O,ABO的直徑,作EGABH,交BCF,延長GE交直線MCD,且∠MCA=∠B,求證:

(1)MCO的切線;

(2)△DCF是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形 ABCD 中,AB5,AD3.以點 B 為中心,順時針旋轉(zhuǎn)矩形 BADC,得到矩形 BEFG,點 A、DC 的對應(yīng)點分別為 E、F、G

1)如圖1,當點 E 落在 CD 邊上時,求線段 CE 的長;

2)如圖2,當點 E 落在線段 DF 上時,求證:∠ABD=∠EBD

3)在(2)的條件下,CDBE 交于點 H,求線段 DH 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將含有 30°角的直角三角板 OAB 如圖放置在平面直角坐標系中,OB x軸上, OA=2,將三角板繞原點 O 順時針旋轉(zhuǎn) 75°,則點 A 的對應(yīng)點 A′ 的坐標為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1,圖2是兩張形狀、大小完全相同的6×6方格紙,方格紙中的每個小長方形的邊長為1,所求的圖形各頂點也在格點上.

1)在圖1中畫一個以點,為頂點的菱形(不是正方形),并求菱形周長;

2)在圖2中畫一個以點為所畫的平行四邊形對角線交點,且面積為6,求此平行四邊形周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方格中單位長度為1的小正方形的頂點叫格點,點和點是格點,位置如圖:

1)線段的長是______________

2)在圖1中確定格點,使為直角三角形,畫出一個這樣的;

3)在圖2中確定格點,使為等腰三角形,畫出一個這樣的;

4)在圖2中滿足題(3)條件的格點共有___________個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(﹣6,n),與x軸交于點C.

(1)求一次函數(shù)y=kx+b的關(guān)系式;

(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;

(3)若點P在x軸上,且SACP=SBOC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AOB 的頂點 O 為圓心,OB 為半徑作O,交 OA 于點 E, AB 于點 D,連接 DE,DEOB,延長 AO O 于點 C,連接 CB

(1)求證:;

(2) AD=4AECE,求 OC 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著車輛的增加,交通違規(guī)的現(xiàn)象越來越嚴重,交警對某雷達測速區(qū)檢測到的一組汽車的時速數(shù)據(jù)進行整理,得到其頻數(shù)及頻率如表(未完成):

數(shù)據(jù)段

頻數(shù)

頻率

3040

10

0.05

4050

36

5060

0.39

6070

7080

20

0.10

總計

200

1

注:3040為時速大于等于30千米而小于40千米,其他類同

(1)請你把表中的數(shù)據(jù)填寫完整;

(2)補全頻數(shù)分布直方圖;

(3)如果汽車時速不低于60千米即為違章,則違章車輛共有多少輛?

查看答案和解析>>

同步練習冊答案