【題目】已知某開發(fā)區(qū)有一塊四邊形的空地ABCD,如圖所示,現(xiàn)計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問要多少投入?
【答案】7200元
【解析】
仔細(xì)分析題目,需要求得四邊形的面積才能求得結(jié)果.連接BD,在直角三角形ABD中可求得BD的長(zhǎng),由BD、CD、BC的長(zhǎng)度關(guān)系可得三角形DBC為一直角三角形,DC為斜邊;由此看,四邊形ABCD由Rt△ABD和Rt△DBC構(gòu)成,則容易求解.
連接BD,
在Rt△ABD中,BD2=AB2+AD2=32+42=52,
在△CBD中,CD2=132,BC2=122,
而122+52=132,
即BC2+BD2=CD2,
∴∠DBC=90°,
S四邊形ABCD=S△BAD+S△DBC=ADAB+DBBC=×4×3+×12×5=36.
所以需費(fèi)用36×200=7200(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國(guó)家規(guī)定個(gè)人發(fā)表文章、出版圖書所得稿費(fèi)的納稅計(jì)算方法是:
(1)稿費(fèi)不高于800元的不納稅;
(2)稿費(fèi)高于800元,而低于4000元的應(yīng)繳納超過800元的那部分稿費(fèi)的14%的稅;
(3)稿費(fèi)為4000元或高于4000元的應(yīng)繳納全部稿費(fèi)的11%的稅,
試根據(jù)上述納稅的計(jì)算方法作答:
①若王老師獲得的稿費(fèi)為2400元,則應(yīng)納稅________元,若王老師獲得的稿費(fèi)為4000元,則應(yīng)納稅________元.
②若王老師獲稿費(fèi)后納稅420元,求這筆稿費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠APB=30°,圓心在PB上的⊙O的半徑為1cm,OP=3cm,若⊙O沿BP方向平移,當(dāng)⊙O與PA相切時(shí),圓心O平移的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線,、分別是和上的動(dòng)點(diǎn),點(diǎn)為直線、之間任一點(diǎn),且,則與之間的數(shù)量關(guān)系為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與相交于點(diǎn),,射線在內(nèi)(如圖1).
(1)若比小25度,求的大小;
(2)若射線平分,(如圖2),則(用含的代數(shù)式表示,請(qǐng)直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓內(nèi)接四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)N,點(diǎn)M在對(duì)角線BD上,且滿足∠BAM=∠DAN,∠BCM=∠DCN.
求證:(1)M為BD的中點(diǎn);(2) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,點(diǎn)A、B分別表示數(shù)a、b,且|a+6|+|b-10|=0,記AB=|a-b|
(1) 求AB的值
(2) 如圖,點(diǎn)P、Q分別從點(diǎn)A、B出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng),點(diǎn)P的速度是每秒4個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒1個(gè)單位長(zhǎng)度,點(diǎn)C從原點(diǎn)出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng),速度是每秒3個(gè)單位長(zhǎng)度.經(jīng)過多少秒,點(diǎn)C與點(diǎn)P、Q的距離相等?
(3) 在(2)的條件下,點(diǎn)M從對(duì)應(yīng)-8的點(diǎn)出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),速度是每秒4個(gè)單位長(zhǎng)度,在運(yùn)動(dòng)過程中,MP+MC-3MQ的值是否為定值?若是,求出其值,若不是,請(qǐng)說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在邊BC、CD上,連接AE、EF、AF,且∠EAF=45°,下列結(jié)論:
①△ABE≌△ADF;
②∠AEB=∠AEF;
③正方形ABCD的周長(zhǎng)=2△CEF的周長(zhǎng);
④S△ABE+S△ADF=S△CEF,其中正確的是_____.(只填寫序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com