【題目】已知直線l分別與x軸,y軸交于A,B兩點,與雙曲線(k≠0,x>0)分別交于D,E兩點.若點D的坐標(biāo)為((3.1),點E的坐標(biāo)為(1,n).

(1)分別求出直線l與雙曲線的解析式;

(2)求△EOD的面積;

(3)若將直線l向下平移m(m>O)個單位,當(dāng)m為何位時,直線l與雙曲線有且只有一個交點.

【答案】

【解析】

(1)把D坐標(biāo)代入反比例解析式求出k的值,確定出反比例解析式,設(shè)直線l解析式為y=ax+b,把DE坐標(biāo)代入求出ab的值,即可確定出直線l解析式;
(2)根據(jù)三角形的面積的和差即可得到結(jié)果.
(3)利用平移規(guī)律表示出直線l平移后的解析式,與反比例解析式聯(lián)立消去y得到關(guān)于x的一元二次方程,由直線l與雙曲線有且只有一個交點,得到根的判別式等于0,即可求出m的值;

(1)D(3,1)代入反比例解析式得:1=,即k=3,

∴反比例解析式為y=,

E的坐標(biāo)(1,n)代入y=n=3,

E的坐標(biāo)為(1,3),

設(shè)直線l解析式為y=ax+b,

D(3,1),E(1,3)代入得:

解得:a=1,b=4,

則直線l解析式為y=x+4;

(2)連接OD,OE,過DDMOAM,ENOAN,

SDOE=SAOESAOD=×3×4×4×1=4;

(3)設(shè)直線l向下平移m(m>0)個單位的解析式為y=x+4m,

聯(lián)立得:,

消去y得:=x+4m,x2+(m4)x+3=0,

∵直線1與雙曲線有且只有一個交點,

=(m4)212=0,m4=22

解得:m=2+42+4;

m<4,

m=42.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程.

(1)2(x+2)2-8=0;

(2)x(x-3)=x;

(3)x2=6x-;

(4)(x+3)2+3(x+3)-4=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為測山高,在點A處測得山頂D的仰角為30°,從點A向山的方向前進(jìn)140米到達(dá)點B,在B處測得山頂D的仰角為60°(如圖).

1)在所給的圖中尺規(guī)作圖:過點DDC⊥AB,交AB的延長線于點C(保留作圖痕跡);

2)山高DC是多少(結(jié)果保留根號形式)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負(fù)半軸交于點B,且OA=OB.

(1)求函數(shù)y=kx+b和y=的表達(dá)式;

(2)已知點C(0,5),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=kx-1(x>0)的圖象交矩形OABC的邊AB于點D,交邊BC于點E,且BE=2EC.若四邊形ODBE的面積為6,則k=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P在正方形ABCDAD上,連接PB,過點B作一條射線與邊DC的延長線交于點 Q,使得∠QBE=PBC,其中E是邊AB延長線上的點,連接PQ,PQ=PB+PD+3,則PAB的面積為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,DAC邊上的中點,過D點作DEDF,交AB于點E,交BC于點F,若AE=8FC=6.

1)求EF的長.

2)求四邊形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是邊長為1的正方形,軸正半軸的夾角為15°,點在拋物線的圖象上,則的值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條拋物線與x軸相交于A,B兩點,其頂點P在折線C-D-E上移動,若點C,D,E的坐標(biāo)分別為(-1,4),(3,4),(3,1),點B的橫坐標(biāo)的最小值為1,則點A的橫坐標(biāo)的最大值為________

查看答案和解析>>

同步練習(xí)冊答案