【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構成.樂樂用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計)增長或縮短.經(jīng)測量,得到如下數(shù)據(jù):

單層部分的長度(cm

4

6

8

10

150

雙層部分的長度(cm

73

72

71

   

0

1)根據(jù)上表中數(shù)據(jù)的規(guī)律,填寫表格中空白處的數(shù)據(jù);

2)設單層部分的長度為xcm,請用含x的代數(shù)式表示出雙層部分的長度   cm

3)根據(jù)樂樂的身高和習慣,挎帶的長度為110cm時,背起來最舒適,請求出此時單層部分的長度.

【答案】170;(2y=﹣x+75cm;(370cm

【解析】

1)根據(jù)規(guī)律即可得出結果;

2)觀察表格可知,yx的一次函數(shù),設ykx+b,利用待定系數(shù)法即可解決問題;

3)列出方程即可解決問題.

解:(1)根據(jù)單層部分的長度每增加2cm,雙層部分的長度減小1cm,可得當單層部分的長度為10cm時,雙層部分的長度為70

故答案為:70;

2)觀察表格可知,yx的一次函數(shù),設ykx+b

則有 ,解得,

y=﹣x+75

故答案為:y=﹣x+75;

3)根據(jù)題意得:

解得x70

答:挎帶的長度為110cm時,單層部分的長度為70cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線過點,直線與直線交于點B,與x軸交于點C

1)求k的值;

2)橫、縱坐標都是整數(shù)的點叫做整點.

b=4時,直接寫出OBC內(nèi)的整點個數(shù);

②若OBC內(nèi)的整點個數(shù)恰有4個,結合圖象,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:數(shù)學課上,老師給出了如下問題:如圖甲,AOB=70°OC平分AOB

BOD=20°,請你補全圖形,并求COD的度數(shù).

以下是小明的解答過程:

解:如圖乙,因為OC平分AOB,AOB=70°,

所以BOC=____AOB=________°

因為BOD=20°,

所以COD= °

小靜說:我覺得這個題有兩種情況,小明考慮的是ODAOB外部的情況,事實上,OD還可能在AOB的內(nèi)部

完成以下問題:

1)請你將小明的解答過程補充完整;

2)根據(jù)小靜的想法,請你在圖甲中畫出另一種情況對應的圖形,求出此時∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四點AB、C、D

1)用圓規(guī)和無刻度的直尺按下列要求與步驟畫出圖形:

①畫直線AB

②畫射線DC

③延長線段DA至點E,使(保留作圖痕跡)

④畫一點P,使點P既在直線AB上,又在線段CE上.

2)在(1)中所畫圖形中,若cm,cm,點F為線段DE的中點,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是線段AB上的一點,點M、N分別是線段AP、PB的中點.

1)如圖1,若點P是線段AB的中點,且MP=4cm,求線段AB的長;

2)如圖2,若點P是線段AB上的任一點,且AB=12cm,求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AB⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E⊙O上.

1)若∠AOD=52°,求∠DEB的度數(shù);

2)若OC=3OA=5,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x的對稱軸與x軸交于點A,點F在拋物線的對稱軸上,且點F的縱坐標為.過拋物線上一點P(m,n)向直線y=作垂線,垂足為M,連結PF.

(1)當m=2時,求證:PF=PM;

(2)當點P為拋物線上任意一點時,PF=PM是否還成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某年5月,我國南方某省A、B兩市遭受嚴重洪澇災害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災物資200噸和300噸的消息后,決定調(diào)運物資支援災區(qū).已知C市有救災物資240噸,D市有救災物資260噸,現(xiàn)將這些救災物資全部調(diào)往A、B兩市.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用別為每噸15元和30元,設從D市運往B市的救災物資為x噸.

(1)請?zhí)顚懴卤?/span>

A(噸)

B(噸)

合計(噸)

C

   

   

240

D

   

x

260

總計(噸)

200

300

500

(2)設C、D兩市的總運費為w元,求wx之間的函數(shù)關系式,并寫出自變量x的取值范圍;

(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。

[來

根據(jù)以上信息,解答下列問題:

(1)設租車時間為小時,租用甲公司的車所需費用為元,租用乙公司的車所需費用為元,分別求出關于的函數(shù)表達式;

(2)請你幫助小明計算并選擇哪個出游方案合算。

查看答案和解析>>

同步練習冊答案