我們已經(jīng)知道,平行四邊形的一條對角線把這個平行四邊形分成兩個面積相等的三角形,請你舉一個四邊形的例子,畫圖說明該四邊形的一條對角線把這個四邊形分成的兩個三角形的形狀大小都一樣,但這個四邊形不是平行四邊形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在八年級上冊我們已經(jīng)知道三角形的中位線具有如下性質:
三角形的中位線平行于第三邊,并且等于它的一半.
如圖所示,已知△ABC和下列四種說法:
①D是AB中點;②E是AC中點;③DE=
12
BC;④DE∥BC.
請你以其中的兩種說法為條件(①和②不能同時作為條件),其余兩種說法為結論,構造一個命題;并判定你所構造的命題是否正確.如果正確請說明理由;如果不正確,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2-4x+1,將此拋物線沿x軸方向向左平移4個單位長度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)由拋物線對稱軸知識我們已經(jīng)知道:直線x=m,即為過點(m,0)平行于y軸的直線,類似地,直線y=m,即為過點(0,m)平行于x軸的直線、請結合圖象回答:當直線y=m與這兩條拋物線有且只有四個交點,實數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=x2+bx+c(b<0),并將此拋物線沿x軸向左平移-b個單位長度,試回答(2)中的問題.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小學四年級我們已經(jīng)知道三角形三個內(nèi)角和是180°,對于如圖1中,AC,BD交于O點,形成的兩個三角形中的角存在以下關系:①∠DOC=∠AOB   ②∠D+∠C=∠A+∠B.試探究下面問題:
已知∠BAD的平分線AE與∠BCD的平分線CE交于點E,
(1)如圖2,若AB∥CD,∠D=30°,∠B=40°,則∠E=
35°
35°
;
(2)如圖3,若AB不平行CD,∠D=30°,∠B=50°,則∠E=
40°
40°
;
(3)在總結前兩問的基礎上,借助圖3,探究∠E與∠D、∠B之間是否存在某種等量關系?若存在,請說明理由;若不存在,請舉例說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線y=x2-4x+1,將此拋物線沿x軸方向向左平移4個單位長度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)由拋物線對稱軸知識我們已經(jīng)知道:直線x=m,即為過點(m,0)平行于y軸的直線,類似地,直線y=m,即為過點(0,m)平行于x軸的直線、請結合圖象回答:當直線y=m與這兩條拋物線有且只有四個交點,實數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=x2+bx+c(b<0),并將此拋物線沿x軸向左平移-b個單位長度,試回答(2)中的問題.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市密云縣中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•密云縣二模)已知拋物線y=x2-4x+1,將此拋物線沿x軸方向向左平移4個單位長度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)由拋物線對稱軸知識我們已經(jīng)知道:直線x=m,即為過點(m,0)平行于y軸的直線,類似地,直線y=m,即為過點(0,m)平行于x軸的直線、請結合圖象回答:當直線y=m與這兩條拋物線有且只有四個交點,實數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=x2+bx+c(b<0),并將此拋物線沿x軸向左平移-b個單位長度,試回答(2)中的問題.

查看答案和解析>>

同步練習冊答案