【題目】如圖,O為坐標(biāo)原點,點B在x軸的正半軸上,四邊形OACB是平行四邊形,點A的橫縱坐標(biāo)之比為3:4,反比例函數(shù)y=(k>0)在第一象限內(nèi)的圖象經(jīng)過點A,且與BC交于點F.
(1)若OA=10,求反比例函數(shù)解析式;
(2)若點F為BC的中點,且△AOF的面積S=12,求OA的長和點C的坐標(biāo).
【答案】(1)y=(x>0)(2)OA=,點C的坐標(biāo)(,).
【解析】
(1)過點A作AH⊥OB于H,根據(jù)已知條件得到sin∠AOB=,OA=10,求得AH=8,OH=6,于是得到結(jié)論;
(2)設(shè)OA=a(a>0),過點F作FM⊥x軸于M,過點C作CN⊥x軸于點N,根據(jù)平行四邊形的性質(zhì)得到OH=BN,根據(jù)已知條件得到AH=a,OH=a,于是得到S△AOH=×aa=a2,求得S△OBF=6,得到S△BMF=BMFM=×a× a= a2,根據(jù)點A,F都在y= 的圖象上,得到S△AOH=S△FOM= k,列方程即可得到結(jié)論.
解:(1)過點A作AH⊥OB于H,
∵點A的橫縱坐標(biāo)之比為3:4,
∴sin∠AOB=,OA=10,
∴AH=8,OH=6,
∴A點坐標(biāo)為(68),根據(jù)題意得:
8=,可得:k=48,
∴反比例函數(shù)解析式:y=(x>0);
(2)設(shè)OA=a(a>0),過點F作FM⊥x軸于M,過點C作CN⊥x軸于點N,
由平行四邊形性質(zhì)可證得OH=BN,
∵點A的橫縱坐標(biāo)之比為3:4,
∴sin∠AOB=,
∴AH=a,OH=a,
∴S△AOH=×aa=a2,
∵S△AOF=12,
∴S平行四邊形AOBC=24,
∵F為BC的中點,
∴S△OBF=6,
∵BF=a,∠FBM=∠AOB,
∴FM=a,BM=a,
∴S△BMF=BMFM=×a× a= a2,
∴S△FOM=S△OBF+S△BMF=6+a2,
∵點A,F都在y= 的圖象上,
∴S△AOH=S△FOM=k,
∴ a2=6+a2,
∴a=,
∴OA=,
∴AH=,OH=2,
∵S平行四邊形AOBC=OBAH=24,
∴OB=AC=3,
∴ON=OB+OH=5,
∴C(5,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,,點從點出發(fā)向點移動,速度為每秒1個單位長度,點從點出發(fā)向點移動,速度為每秒2個單位長度. 兩點同時出發(fā),且其中的任何一點到達終點后,另一點的移動同時停止.
(1)若兩點的運動時間為,當(dāng)為何值時,?
(2)在(1)的情況下,猜想與的位置關(guān)系并證明你的結(jié)論.
(3)①如圖2,當(dāng)時,其他條件不變,若(2)中的結(jié)論仍成立,則_________.
②當(dāng),時,其他條件不變,若(2)中的結(jié)論仍成立,則_________(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,為矩形的邊上一點,動點,同時從點出發(fā),點沿折線運動到點時停止,點沿運動到點時停止,它們運動的速度都是秒,設(shè)、同時出發(fā)秒時,的面積為.已知與的函數(shù)關(guān)系圖象如圖(2)(曲線為拋物線的一部分)則下列結(jié)論正確的是( )
圖(1) 圖(2)
A.B.當(dāng)是等邊三角形時,秒
C.當(dāng)時,秒D.當(dāng)的面積為時,的值是或秒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O的直徑AB長為12,點E是半徑OA的中點,過點E作CD⊥AB交O于點C、D,點P在上運動,點Q在線段CP上,且PQ=2CQ,則EQ的最大值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解下列方程,其中應(yīng)在方程左右兩邊同時加上4的是( 。
A. x2﹣2x=5 B. x2+4x=5 C. 2x2﹣4x=5 D. 4x2+4x=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=表示,且拋物線上的點C到OB的水平距離為3m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中的小方格都是邊長為1的正方形,△ABC的頂點和O點都在正方形的頂點上.
(1)以點O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A1B1C1;
(2)將△A1B1C1繞點B1順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B1C2;
(3)在(2)的旋轉(zhuǎn)過程中,點A1的運動路徑長為 ,邊A1C1掃過的區(qū)域面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連結(jié)EF、EO,若DE=,∠DPA=45°.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)表達式﹣﹣利用函數(shù)圖象研究其性質(zhì)﹣﹣運用函數(shù)解決問題”的學(xué)習(xí)過程.在畫函數(shù)圖象時,我們通過描點或平移的方法畫出了所學(xué)的函數(shù)圖象.同時我們也學(xué)習(xí)了絕對值的意義,結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題:在函數(shù)y=|kx﹣1|+b中,當(dāng)x=2時,y=﹣3;x=0時,y=﹣2.
(1)求這個函數(shù)的表達式;
(2)用列表描點的方法畫出該函數(shù)的圖象;請你先把下面的表格補充完整,然后在下圖所給的坐標(biāo)系中畫出該函數(shù)的圖象;
x | … | ﹣6 | ﹣4 | ﹣2 | 0 | 2 | 4 | 6 | … |
y | … |
| 0 | ﹣1 | ﹣2 | ﹣3 | ﹣2 |
| … |
(3)觀察這個函數(shù)圖象,并寫出該函數(shù)的一條性質(zhì);
(4)已知函數(shù)y= (x>0)的圖象如圖所示,與y=|kx﹣1|+b的圖象兩交點的坐標(biāo)分別是(2+4,-2),(2﹣2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com