【題目】已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是邊AC上一點(不包括端點A、C),過點P作PE⊥BC于點E,過點E作EF∥AC,交AB于點F.設PC=x,
PE=y.

(1)求y與x的函數(shù)關系式;
(2)是否存在點P使△PEF是Rt△?若存在,求此時的x的值;若不存在,請說明理由.

【答案】
(1)解:在Rt△ABC中,∠B=90°,AC=20,AB=10,

∴sinC= ,

∵PE⊥BC于點E,

∴sinC= =

∵PC=x,PE=y,

∴y= x(0<x<20)


(2)解:存在點P使△PEF是Rt△,

①如圖1,當∠FPE=90°時,四邊形PEBF是矩形,BF=PE= x,

四邊形APEF是平行四邊形,PE=AF= x,

∵BF+AF=AB=10,

∴x=10;

②如圖2,當∠PFE=90°時,Rt△APF∽Rt△ABC,

∠ARP=∠C=30°,AF=40﹣2x,

平行四邊形AFEP中,AF=PE,即:40﹣2x= x,

解得x=16;

③當∠PEF=90°時,此時不存在符合條件的Rt△PEF.

綜上所述,當x=10或x=16,存在點P使△PEF是Rt△.


【解析】考查了相似三角形的判定與性質(zhì),平行四邊形的性質(zhì),矩形的性質(zhì),解直角三角形,注意分類思想的運用,綜合性較強,難度中等.(1)在Rt△ABC中,根據(jù)三角函數(shù)可求y與x的函數(shù)關系式;(2)分三種情況:①如圖1,當∠FPE=90°時,②如圖2,當∠PFE=90°時,③當∠PEF=90°時,進行討論可求x的值.
【考點精析】通過靈活運用平行四邊形的性質(zhì)和矩形的性質(zhì),掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;矩形的四個角都是直角,矩形的對角線相等即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一個圓錐沿母線OA剪開,展開后得到扇形AOC,已知圓錐的高h為12cm,OA=13cm,則扇形AOC中 的長是cm(計算結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,分別延長△ABC的邊AB、ACD、E,∠CBD與∠BCE的平分線相交于點P,愛動腦筋的小明在寫作業(yè)的時發(fā)現(xiàn)如下規(guī)律:

(1)若∠A=60°,則∠P=   °;

(2)若∠A=40°,則∠P=   °;

(3)若∠A=100°,則∠P=   °;

(4)請你用數(shù)學表達式歸納∠A與∠P的關系   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD各個頂點的坐標分別為(﹣2,8),(﹣11,6),(﹣14,0),(0,0).

(1)求這個四邊形的面積.

(2)如果把原來的四邊形ABCD向下平移3個單位長度,再向左平移2個單位長度后得到新的四邊形A1B2C3D4,請直接寫出平移后的四邊形各點的坐標和新四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用A、B兩種機器人搬運大米,A型機器人比B型機器人每小時多搬運20袋大米,A型機器人搬運700袋大米與B型機器人搬運500袋大米所用時間相等.求A、B型機器人每小時分別搬運多少袋大米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】順次連接菱形各邊的中點所形成的四邊形是(
A.等腰梯形
B.矩形
C.菱形
D.正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是矩形ABCD的一條對角線.
(1)作BD的垂直平分線EF,分別交AD、BC于點E、F,垂足為點O.(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);
(2)求證:DE=BF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是矩形ABCD的一條對角線.
(1)作BD的垂直平分線EF,分別交AD、BC于點E、F,垂足為點O.(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);
(2)求證:DE=BF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(背景知識)數(shù)軸上有兩點 A、B 對應的數(shù)為 a、b,AB表示這兩個點間的距離,這兩個點的中點所對應的數(shù)為.

已知數(shù)軸上有三點 A、B、C,對應的數(shù)分別為 a、b、c,a、b、c 滿足以下兩個條件:①② a-b+c=0.

(1)求出 a、b、c 的值;

(2)若數(shù)軸上有一點 P,PA=3PB,求出滿足條件的P點所對應的數(shù);

(3)點A以每秒鐘2個單位長度的速度向左運動,點B以每秒鐘4個單位長度的速度向右運動,點C以每秒鐘6個單位長度的速度向右運動.它們同時出發(fā),M為AB 的中點,N為BC的中點,Q為AC的中點,O為原點,試求的值.

查看答案和解析>>

同步練習冊答案