【題目】如圖,在矩形ABCD中,對角線AC、BD交于點(diǎn)O, 自點(diǎn)A作AE⊥BD于點(diǎn)E,且BE:ED=1:3,過點(diǎn)O作OF⊥AD于點(diǎn)F,若OF=3cm,則BD的長為( 。cm.
A.6B.9C.12D.15
【答案】C
【解析】
根據(jù)矩形的性質(zhì)得出AC=BD,BD=2BO=2OD,AC=2AO,∠BAD=90°,求出AO=BO,根據(jù)等邊三角形的判定得出△ABO是等邊三角形,求出∠BAO=60°,∠DAO=30°,即可求出AO,即可求出答案.
∵四邊形ABCD是矩形,∴AC=BD,BD=2BO=2OD,AC=2AO,∠BAD=90°,∴AO=BO,
∵BE:ED=1:3,∴BE=EO,
∵AE⊥BD,∴AB=AO,即AO=OB=AB,
∴△ABO是等邊三角形,
∴∠BAO=60°,∴∠DAO=90°-60°=30°,
∵OF⊥AD于點(diǎn)F,OF=3cm,∴∠AFO=90°,AO=2OF=6cm,
∴AC=2AO=12cm,∴BD=12cm,故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個鋼筋三角架三邊長分別為,,,現(xiàn)在要做一個和它相似的鋼筋三角架,而只有長為和的兩根鋼筋,要求以其中的一根為一邊,從另一根上截兩段(允許有余料)作為另兩邊,則不同的截法有( )
A. 一種 B. 兩種 C. 三種 D. 四種或四種以上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)
(1)在圖中畫出裁剪示意圖,用實(shí)線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?
(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長多大時,總費(fèi)用最低,最低為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依次為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則任兩個螺絲間的距離的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,在平面直角坐標(biāo)系中,一次函數(shù)的圖像交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)C是點(diǎn)A關(guān)于y軸對稱的點(diǎn),過點(diǎn)C作y軸平行的射線CD,交直線AB與點(diǎn)D,點(diǎn)P是射線CD上的一個動點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo).
(2)如圖2,將△ACP沿著AP翻折,當(dāng)點(diǎn)C的對應(yīng)點(diǎn)E落在直線AB上時,求點(diǎn)P的坐標(biāo).
(3)若直線OP與直線AD有交點(diǎn),不妨設(shè)交點(diǎn)為Q(不與點(diǎn)D重合),連接CQ,是否存在點(diǎn)P,使得S△CPQ =2S△DPQ,若存在,請直接寫出點(diǎn)P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的兩條對角線相交于O,且AC平分∠DAB.
(1)求證:四邊形ABCD是菱形;
(2)若AC=8,BD=6,試求點(diǎn)O到AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為原點(diǎn),點(diǎn),點(diǎn),把繞點(diǎn)逆時針旋轉(zhuǎn),得,點(diǎn)、旋轉(zhuǎn)后的對應(yīng)點(diǎn)為、,記旋轉(zhuǎn)角為ɑ.
如圖,若ɑ,求的長;
如圖,若ɑ,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點(diǎn)為的中點(diǎn),,分別在,上,且現(xiàn)有以下四個結(jié)論:
①;②;③四邊形的面積為4;
④的面積最大為3.其中正確的結(jié)論有( )
A.①②④B.①②③C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校決定加強(qiáng)羽毛球、籃球、乒乓球、排球、足球五項球類運(yùn)動,每位同學(xué)必須且只能選擇一項球類運(yùn)動,對該校學(xué)生隨機(jī)抽取進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:
運(yùn)動項目 | 頻數(shù)(人數(shù)) |
羽毛球 | 30 |
籃球 | |
乒乓球 | 36 |
排球 | |
足球 | 12 |
請根據(jù)以上圖表信息解答下列問題:
(1)頻數(shù)分布表中的 , ;
(2)在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為 度;
(3)全校有多少名學(xué)生選擇參加乒乓球運(yùn)動?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com