【題目】如圖,梯形ABCD中,AB∥CD,點E、F、G分別是BD、AC、DC的中點.已知兩底差是6,兩腰和是12,則△EFG的周長是

【答案】9
【解析】解:

連接AE,并延長交CD于K,
∵AB∥CD,
∴∠BAE=∠DKE,∠ABD=∠EDK,
∵點E、F、G分別是BD、AC、DC的中點.
∴BE=DE,
在△AEB和△KED中,
,
∴△AEB≌△KED(AAS),
∴DK=AB,AE=EK,EF為△ACK的中位線,
∴EF= CK= (DC﹣DK)= (DC﹣AB),
∵EG為△BCD的中位線,∴EG= BC,
又FG為△ACD的中位線,∴FG= AD,
∴EG+GF= (AD+BC),
∵兩腰和是12,即AD+BC=12,兩底差是6,即DC﹣AB=6,
∴EG+GF=6,F(xiàn)E=3,
∴△EFG的周長是6+3=9.
所以答案是:9.
【考點精析】解答此題的關鍵在于理解三角形中位線定理的相關知識,掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半,以及對梯形的定義的理解,了解一組對邊平行,另一組對邊不平行的四邊形是梯形.兩腰相等的梯形是等腰梯形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,切點為B,OC平行于AD,OA=2.

(1)求證:CD是⊙O的切線;
(2)若AD+OC=9,求CD的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為豐富學生的校園生活,準備從某體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買1個足球和2個籃球共需210元.購買2個足球和6個籃球共需580元.
(1)購買一個足球、一個籃球各需多少元?
(2)根據(jù)學校的實際情況,需從該體育用品商店一次性購買足球和籃球共100個.要求購買足球和籃球的總費用不超過6000元,這所中學最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點的縱坐標分別為3,1.反比例函數(shù)y= 的圖象經(jīng)過A,B兩點,則菱形ABCD的面積為(

A.2
B.4
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】杰瑞公司成立之初投資1500萬元購買新生產(chǎn)線生產(chǎn)新產(chǎn)品,此外,生產(chǎn)每件該產(chǎn)品還需要成本60元.按規(guī)定,該產(chǎn)品售價不得低于100元/件且不得超過180元/件,該產(chǎn)品銷售量y(萬件)與產(chǎn)品售價x(元)之間的函數(shù)關系如圖所示.

(1)求y與x之間的函數(shù)關系式,并寫出x的取值范圍;
(2)第一年公司是盈利還是虧損?求出當盈利最大或者虧損最小時的產(chǎn)品售價;
(3)在(2)的前提下,即在第一年盈利最大或者虧損最小時,第二年公司重新確定產(chǎn)品售價,能否使兩年共盈利達1340萬元?若能,求出第二年產(chǎn)品售價;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰三角形ABC中,AB=AC,O為AB上一點,以O為圓心,OB長為半徑的圓交BC于D,DE⊥AC交AC于E.

(1)求證:DE是⊙O的切線;
(2)若⊙O與AC相切于F,AB=AC=8cm,sinA= ,求⊙O的半徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在邊長為8的等邊△ABC中,CD⊥AB,垂足為D,⊙O的圓心與點D重合,⊙O與線段CD交于點E,若將⊙O沿DC方向向上平移1cm后,如圖②,⊙O恰與△ABC的邊AC,BC相切,則圖①中CE的長為cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是等邊三角形.
(1)動手操作:如圖1,點D在△ABC內(nèi),且∠BDC=150°,CD=1,BD= , 把△BCD繞著點C順時針旋轉(zhuǎn),使點B旋轉(zhuǎn)到點A,得到△AEC.

①依題意補全圖1;(確認無誤后,請用黑色水筆描黑)
②連接DE,則線段DE= , AD=
(2)應用拓展:如圖2,點D在△ABC外,且CD=3,BD=4,AD=5,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地,兩車同時出發(fā),快車到達乙地后,快車停止運動,慢車繼續(xù)以原速勻速駛往甲地,直至慢車到達甲地為止,設慢車行駛的時間為t(h),兩車之間的距離為s(km),圖中的折線表示s與t之間的函數(shù)關系.根據(jù)圖象提供的信息有下列說法:①甲、乙兩地之間的距離為900km;②行駛4h兩車相遇;③快車的速度為150km/h;④行駛6h兩車相距400km;⑤相遇時慢車行駛了240km;⑥快車共行駛了6h.其中符合圖象描述的說法有( )個.

A.3
B.4
C.5
D.6

查看答案和解析>>

同步練習冊答案