【題目】如圖1,將一個量角器與一張等邊三角形(△ABC)紙片放置成軸對稱圖形,CDAB,垂足為D,半圓(量角器)的圓心與點D重合,此時,測得頂點C到量角器最高點的距離CE=2cm,將量角器沿DC方向平移1cm,半圓(量角器)恰與△ABC的邊AC,BC相切,如圖2,AB的長為__________cm.

【答案】

【解析】

如圖,設(shè)圖2中半圓的圓心為O,與BC的切點為M,連接OM,根據(jù)切線的性質(zhì)可以得到∠OMC90°,而根據(jù)已知條件可以得到∠DCB30°,設(shè)AB2xcm,根據(jù)等邊三角形得到CDxcm,而CE2cm,又將量角器沿DC方向平移1cm,由此得到半圓的半徑為OM=x2cmOC=(x1cm,然后在RtOCM中利用三角函數(shù)可以列出關(guān)于x的方程,解方程即可求解.

如圖,設(shè)圖2中半圓的圓心為O,與BC的切點為M,連接OM,則OMMC,∴∠OMC90°,依題意得:∠DCB30°,設(shè)AB2xcm

∵△ABC是等邊三角形,∴CDxcm,而CE2cm,又將量角器沿DC方向平移1cm,∴半圓的半徑為OM=x2cmOC=(x1cm,∴sinDCB,∴,∴x,∴AB2x2cm).

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(發(fā)現(xiàn)問題)愛好數(shù)學(xué)的小明在做作業(yè)時碰到這樣的一道題目:

如圖①,點O為坐標(biāo)原點,⊙O的半徑為1,點A(2,0).動點B在⊙O上,連結(jié)AB,作等邊△ABC(A,B,C為順時針順序),求OC的最大值

(解決問題)小明經(jīng)過多次的嘗試與探索,終于得到解題思路:在圖①中,連接OB,以O(shè)B為邊在OB的左側(cè)作等邊三角形BOE,連接AE.

(1)請你找出圖中與OC相等的線段,并說明理由;

(2)求線段OC的最大值.

(靈活運用)

(3)如圖②,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,求線段AM長的最大值及此時點P的坐標(biāo).

(遷移拓展)

(4)如圖③,BC=4,點D是以BC為直徑的半圓上不同于B、C的一個動點,以BD為邊作等邊△ABD,請直接寫出AC的最值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,下列結(jié)論:b2﹣4ax>0;②2a+b>0;③abc<0;④4a﹣2b+c<0;⑤a+b+c>0.其中正確的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四張背面完全相同的紙牌的正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻后摸出一張,不放回,再摸出一張

(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用AB、C、D表示);

(2)求摸出的兩張紙牌牌面上所畫幾何圖形既是軸對稱圖形又是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1,在ABCD中,點E是AB中點,連接DE并延長,交CB的延長線于點F.

(1)求證:△ADE≌△BFE;

(2)如圖2,點G是邊BC上任意一點(點G不與點B、C重合),連接AG交DF于點H,連接HC,過點A作AK∥HC,交DF于點K.

①求證:HC=2AK;

②當(dāng)點G是邊BC中點時,恰有HD=nHK(n為正整數(shù)),求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在Rt△ABC中,∠ACB=90°,D是邊AB的中點,BE⊥CD,垂足為點E.已知AC=15,cosA=

(1)求線段CD的長;

(2)求sin∠DBE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象交于第二、四象限A、B兩點,過點A作AD⊥x軸于D,AD=4,sin∠AOD=,且點B的坐標(biāo)為(n,-2).

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)E是y軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點為對稱中心,把點A(3,4)逆時針旋轉(zhuǎn)90°,得到點B,則點B的坐標(biāo)為(

A. (4,-3) B. (-4,3) C. (-3,4) D. (-3,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、EF分別是ABAC、BC的中點.當(dāng)△ABC滿足____條件時,四邊形DAEF是正方形.

查看答案和解析>>

同步練習(xí)冊答案