【題目】如圖①,△A′OB是將等腰直角三角形AOB的頂點(diǎn)A經(jīng)過(guò)一次變換后所得的等腰直角三角形,請(qǐng)?jiān)趫D②③中,保持O,B位置不動(dòng),對(duì)點(diǎn)A經(jīng)過(guò)一次(或一組)變換,使變換后的△A′OB仍是等腰直角三角形.要求:作出△A′OB,并寫出點(diǎn)A的變換方式.
方式1:把點(diǎn)A向下平移4個(gè)單位;
方式2:_________________;
方式3:_________________.
【答案】如圖所示見(jiàn)解析;方式2:把點(diǎn)A先向下平移3個(gè)單位,再向右平移1個(gè)單位
方式3:把點(diǎn)A向右平移2個(gè)單位.
【解析】
等腰直角三角形的兩個(gè)銳角均為45°,O,B兩點(diǎn)已經(jīng)確定,可分別以OB為直角邊或斜邊確定相應(yīng)的位置看是如何平移得到的即可
如圖:
方式2:把點(diǎn)A先向下平移3個(gè)單位,再向右平移1個(gè)單位
方式3:把點(diǎn)A向右平移2個(gè)單位
變換方式不唯一,還有:方式4:把點(diǎn)A向下平移1個(gè)單位,再向右平移1個(gè)單位;
方式5:把點(diǎn)A向下平移4個(gè)單位,再向右平移2個(gè)單位.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】湖州素有魚(yú)米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢(shì),一次性收購(gòu)了 淡水魚(yú),計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng) 天的總成本為 萬(wàn)元;放養(yǎng) 天的總成本為 萬(wàn)元(總成本=放養(yǎng)總費(fèi)用+收購(gòu)成本).
(1)設(shè)每天的放養(yǎng)費(fèi)用是 萬(wàn)元,收購(gòu)成本為 萬(wàn)元,求 和 的值;
(2)設(shè)這批淡水魚(yú)放養(yǎng) 天后的質(zhì)量為 ( ),銷售單價(jià)為 元/ .根據(jù)以往經(jīng)驗(yàn)可知: 與 的函數(shù)關(guān)系為 ; 與 的函數(shù)關(guān)系如圖所示.
①分別求出當(dāng) 和 時(shí), 與 的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚(yú)放養(yǎng) 天后一次性出售所得利潤(rùn)為 元,求當(dāng) 為何值時(shí), 最大?并求出最大值.(利潤(rùn)=銷售總額-總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1∥l2,直線l與l1、l2分別交于A、B兩點(diǎn),點(diǎn)M、N分別在l1、l2上,點(diǎn)M、N、P均在l的同側(cè)(點(diǎn)P不在l1、l2上),若∠PAM=α,∠PBN=β.
(1)當(dāng)點(diǎn)P在l1與l2之間時(shí).
①求∠APB的大。ㄓ煤α、β的代數(shù)式表示);
②若∠PAM的平分線與∠PBN的平分線交于點(diǎn)P1,∠P1AM的平分線與∠P1BN的平分線交于點(diǎn)P2,…,∠Pn﹣1AM的平分線與∠Pn﹣1BN的平分線交于點(diǎn)Pn,則∠AP1B= ,∠APnB= .(用含α、β的代數(shù)式表示,其中n為正整數(shù))
(2)當(dāng)點(diǎn)P不在l1與l2之間時(shí).
若∠PAM的平分線與∠PBN的平分線交于點(diǎn)P,∠P1AM的平分線與∠P1BN的平分線交于點(diǎn)P2,…,∠Pn﹣1AM的平分線與∠Pn﹣1BN的平分線交于點(diǎn)Pn,請(qǐng)直接寫出∠APnB的大。ㄓ煤α、β的代數(shù)式表示,其中n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)若∠A=40°,求∠DBC的度數(shù);
(2)若AE=6,△CBD的周長(zhǎng)為20,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線 上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:
x | -2 | -1 | 0 | 1 | 2 |
y | 0 | 4 | 6 | 6 | 4 |
從上表可知,下列說(shuō)法中正確的是 . (填寫序號(hào))
① 拋物線與x軸的一個(gè)交點(diǎn)為(3,0);②函數(shù)y=ax2+bx+c的最大值為6;
② 拋物線的對(duì)稱軸是直線 ; ④在對(duì)稱軸左側(cè),y隨x增大而增大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了推動(dòng)陽(yáng)光體育運(yùn)動(dòng)的廣泛開(kāi)展,引導(dǎo)學(xué)生走向操場(chǎng),走進(jìn)大自然,走到陽(yáng)光,積極參加體育鍛煉,學(xué)校準(zhǔn)備購(gòu)買一批運(yùn)動(dòng)鞋供學(xué)生借用,現(xiàn)從各年的隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制了統(tǒng)計(jì)圖A和圖B,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(1)本次隨機(jī)抽樣的學(xué)生數(shù)是多少?A中值是多少?
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù)各是多少?
(3)根據(jù)樣本數(shù)據(jù),若學(xué)校計(jì)劃購(gòu)買200雙運(yùn)動(dòng)鞋,建議購(gòu)買35號(hào)運(yùn)動(dòng)鞋多少雙?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一張對(duì)面互相平行的紙條折成如圖所示那樣,EF是折痕,若∠EFB=32°則下列結(jié)論正確的有( )
(1)∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達(dá)式為y=x,點(diǎn)O1的坐標(biāo)為(1,0),以O(shè)1為圓心,O1O為半徑畫(huà)圓,交直線l于點(diǎn)P1 , 交x軸正半軸于點(diǎn)O2 , 以O(shè)2為圓心,O2O為半徑畫(huà)圓,交直線l于點(diǎn)P2 , 交x軸正半軸于點(diǎn)O3 , 以O(shè)3為圓心,O3O為半徑畫(huà)圓,交直線l于點(diǎn)P3 , 交x軸正半軸于點(diǎn)O4;…按此做法進(jìn)行下去,其中 的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)E、F分別是B、C的對(duì)應(yīng)點(diǎn).
(1)請(qǐng)畫(huà)出平移后的△DEF,并求△DEF的面積;
(2)若連接AD、CF,則這兩條線段之間的關(guān)系是________________ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com