【題目】在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.
(1)求證:△ABP≌△CAQ;
(2)請判斷△APQ是什么形狀的三角形?試說明你的結(jié)論.

【答案】
(1)證明:∵△ABC為等邊三角形,

∴AB=AC,∠BAC=60°,

在△ABP和△ACQ中,

,

∴△ABP≌△ACQ(SAS)


(2)解:∵△ABP≌△ACQ,

∴∠BAP=∠CAQ,AP=AQ,

∵∠BAP+∠CAP=60°,

∴∠PAQ=∠CAQ+∠CAP=60°,

∴△APQ是等邊三角形


【解析】(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,再根據(jù)SAS證明△ABP≌△ACQ;(2)根據(jù)全等三角形的性質(zhì)得到AP=AQ,再證∠PAQ=60°,從而得出△APQ是等邊三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算。
(1)你發(fā)現(xiàn)了嗎?( 2= × ,( 2= = × = × 由上述計算,我們發(fā)現(xiàn)( 22;
(2)仿照(1),請你通過計算,判斷( 3與( 3之間的關(guān)系.
(3)我們可以發(fā)現(xiàn):( mm(ab≠0)
(4)計算:( 4×( 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)α,β是方程x2x20190的兩個實數(shù)根,則α2的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計,2017年高新技術(shù)產(chǎn)品出口總額達(dá)50570億元,將數(shù)據(jù)50570億用科學(xué)記數(shù)法表示為( )
A.5.0570×109
B.0.50570×1010
C.50.570×1011
D.5.0570×1012

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形ABC中,∠ACB=90°,將△ABC繞點C逆時針方向旋轉(zhuǎn),使點A落在AB邊上的點D處,得到△DEC.

(1)點B的對應(yīng)點是點 , BC的對應(yīng)線段是
(2)判斷△ACD的形狀.
(3)若AD=CD,求∠B和∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,天平右盤中的每個砝碼的質(zhì)量都是1克,則物體A的質(zhì)量m克的取值范圍表示在數(shù)軸上為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”(如圖所示)就是一例.
這個三角形的構(gòu)造法則為:兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左右兩數(shù)之和.事實上,這個三角形給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個數(shù)1,2,1,恰好對應(yīng)(a+b)2=a2+ab+b2展開式中各項的系數(shù);第四行的四個數(shù)1,3,3,1,恰好對應(yīng)著(a+b)3=a3+3a2b+3ab2+b3展開式中各項的系數(shù)等等.根據(jù)上面的規(guī)律,(a+b)4的展開式中各項系數(shù)最大的數(shù)為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABCD中,一組鄰角的差為80°則它的四個內(nèi)角分別為__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m,寬為n )的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長和是(
A.4n
B.4m
C.2(m+n)
D.4(m﹣n)

查看答案和解析>>

同步練習(xí)冊答案