【題目】如圖,在△ABC,AB=AC,∠DBC=15°,AB的垂直平分線MNAC于點(diǎn)D,則∠A=____.

【答案】50°

【解析】

由已知易得AD=BD,從而可得∠A=∠ABD,設(shè)∠A=x,則可得∠ABC=x+15,由AB=AC可得∠C=∠ABC=x+15,這樣在△ABC中由三角形內(nèi)角和為180°可得方程x+x+15+x+15=180,解此方程即可得到∠A的度數(shù).

∵AB的垂直平分線MNAC于點(diǎn)D,

∴AD=BD,

∴∠ABD=∠A,

設(shè)∠A=x,∠ABD=x,

∠ABC=∠ABD+∠DBC=x+15,

∵AB=AC,

∴∠ACB=∠ABC=x+15,

∵∠A+∠ACB+∠ABC=180°,

∴x+x+15+x+15=180°,解得:x=50°,

∴∠A=50°.

故答案為:50°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣ x2+bx+c與x軸分別交于點(diǎn)A(﹣2,0)、B(4,0),與y軸交于點(diǎn)C.
(1)求拋物線解析式;
(2)求△CAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面里,梯形ABCD各頂點(diǎn)的位置如圖所示,圖中每個(gè)小正方形方格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.

(1)求梯形ABCD的面積;

(2)如果把梯形ABCD在坐標(biāo)平面里先向右平移1個(gè)單位,然后向下平移2個(gè)單位得到梯形A1B1C1D1,求新頂點(diǎn)A1,B1,C1,D1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過原點(diǎn)O,且與x軸、y軸分別相交于A(﹣8,0),B(0,﹣6)兩點(diǎn).

(1)求出直線AB的函數(shù)解析式;
(2)若有一拋物線的對(duì)稱軸平行于y軸且經(jīng)過點(diǎn)M,頂點(diǎn)C在圓M上,開口向下,且經(jīng)過點(diǎn)B,求此拋物線的函數(shù)解析式;
(3)設(shè)(2)中的拋物線交x軸于D、E兩點(diǎn),在拋物線上是否存在點(diǎn)P,使得SPDE= SABC?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= .對(duì)角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn).

(1)證明:當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形;

(2)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;

(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說明理由;如果能,說明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)絡(luò)線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,B的坐標(biāo)分別為(-4,5),(-1,3)

(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

(2)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱的;

(3)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在ABC中,AB:BC:CA=3:4:5,且周長(zhǎng)為36cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以每秒1cm的速度移動(dòng);點(diǎn)Q從點(diǎn)B沿BC邊向點(diǎn)C以每秒2cm的速度移動(dòng);如果同時(shí)出發(fā),則過3秒時(shí),求BPQ的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=x2+bx圖象的對(duì)稱軸為直線x=1,若關(guān)于x的一元二次方程x2+bx﹣t=0(t為實(shí)數(shù))在﹣1≤x≤3的范圍內(nèi)有解,則t的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小購(gòu)買了一套經(jīng)濟(jì)適用房,地面結(jié)構(gòu)如圖所示(墻體厚度、地磚間隙都忽略不計(jì),單位:米),他計(jì)劃給臥室鋪上木地板,其余房間都鋪上地磚.根據(jù)圖中的數(shù)據(jù),解答下列問題:(結(jié)果用含x、y的代數(shù)式表示)

(1)求整套住房需要鋪多少平方米的地磚?

(2)求廳的面積比其余房間的總面積多多少平方米?

查看答案和解析>>

同步練習(xí)冊(cè)答案