【題目】問題探究
(1)如圖①,在矩形ABCD中,AB=3,BC=4,如果BC邊上存在點P,使△APD為等腰三角形,那么請畫出滿足條件的一個等腰三角形△APD,并求出此時BP的長;
(2)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為邊AB、AC的中點,當AD=6時,BC邊上存在一點Q,使∠EQF=90°,求此時BQ的長;
問題解決
(3)有一山莊,它的平面圖為如圖③的五邊形ABCDE,山莊保衛(wèi)人員想在線段CD上選一點M安裝監(jiān)控裝置,用來監(jiān)視邊AB,現(xiàn)只要使∠AMB大約為60°,就可以讓監(jiān)控裝置的效果達到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,問在線段CD上是否存在點M,使∠AMB=60°?若存在,請求出符合條件的DM的長,若不存在,請說明理由.
【答案】(1)2;4-;;(2)3+;(3)(400-45-30)米.
【解析】
(1)由于△PAD是等腰三角形,底邊不定,需三種情況討論,運用三角形全等、矩形的性質、勾股定理等知識即可解決問題.
(2)以EF為直徑作⊙O,易證⊙O與BC相切,從而得到符合條件的點Q唯一,然后通過添加輔助線,借助于正方形、特殊角的三角函數值等知識即可求出BQ長.
(3)要滿足∠AMB=60°,可構造以AB為邊的等邊三角形的外接圓,該圓與線段CD的交點就是滿足條件的點,然后借助于等邊三角形的性質、特殊角的三角函數值等知識,就可算出符合條件的DM長.
(1)①作AD的垂直平分線交BC于點P,如圖①,
則PA=PD.
∴△PAD是等腰三角形.
∵四邊形ABCD是矩形,
∴AB=DC,∠B=∠C=90°.
∵PA=PD,AB=DC,
∴Rt△ABP≌Rt△DCP(HL).
∴BP=CP.
∵BC=4,
∴BP=CP=2.
②以點D為圓心,AD為半徑畫弧,交BC于點P′,如圖①,
則DA=DP′.
∴△P′AD是等腰三角形.
∵四邊形ABCD是矩形,
∴AD=BC,AB=DC,∠C=90°.
∵AB=3,BC=4,
∴DC=3,DP′=4.
∴CP′==.
∴BP′=4-.
③點A為圓心,AD為半徑畫弧,交BC于點P″,如圖①,
則AD=AP″.
∴△P″AD是等腰三角形.
同理可得:BP″=.
綜上所述:在等腰三角形△ADP中,
若PA=PD,則BP=2;
若DP=DA,則BP=4-;
若AP=AD,則BP=.
(2)∵E、F分別為邊AB、AC的中點,
∴EF∥BC,EF=BC.
∵BC=12,
∴EF=6.
以EF為直徑作⊙O,過點O作OQ⊥BC,垂足為Q,連接EQ、FQ,如圖②.
∵AD⊥BC,AD=6,
∴EF與BC之間的距離為3.
∴OQ=3
∴OQ=OE=3.
∴⊙O與BC相切,切點為Q.
∵EF為⊙O的直徑,
∴∠EQF=90°.
過點E作EG⊥BC,垂足為G,如圖②.
∵EG⊥BC,OQ⊥BC,
∴EG∥OQ.
∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,
∴四邊形OEGQ是正方形.
∴GQ=EO=3,EG=OQ=3.
∵∠B=60°,∠EGB=90°,EG=3,
∴BG=.
∴BQ=GQ+BG=3+.
∴當∠EQF=90°時,BQ的長為3+.
(3)在線段CD上存在點M,使∠AMB=60°.
理由如下:
以AB為邊,在AB的右側作等邊三角形ABG,
作GP⊥AB,垂足為P,作AK⊥BG,垂足為K.
設GP與AK交于點O,以點O為圓心,OA為半徑作⊙O,
過點O作OH⊥CD,垂足為H,如圖③.
則⊙O是△ABG的外接圓,
∵△ABG是等邊三角形,GP⊥AB,
∴AP=PB=AB.
∵AB=270,
∴AP=135.
∵ED=285,
∴OH=285-135=150.
∵△ABG是等邊三角形,AK⊥BG,
∴∠BAK=∠GAK=30°.
∴OP=APtan30°
=135×
=45.
∴OA=2OP=90.
∴OH<OA.
∴⊙O與CD相交,設交點為M,連接MA、MB,如圖③.
∴∠AMB=∠AGB=60°,OM=OA=90..
∵OH⊥CD,OH=150,OM=90,
∴HM==30.
∵AE=400,OP=45,
∴DH=400-45.
若點M在點H的左邊,則DM=DH+HM=400-45+30img src="http://thumb.zyjl.cn/questionBank/Upload/2020/02/15/08/332c7e85/SYS202002150806083393103338_DA/SYS202002150806083393103338_DA.003.png" width="19" height="21" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />.
∵400-45+30>340,
∴DM>CD.
∴點M不在線段CD上,應舍去.
若點M在點H的右邊,則DM=DH-HM=400-45-30.
∵400-45-30<340,
∴DM<CD.
∴點M在線段CD上.
綜上所述:在線段CD上存在唯一的點M,使∠AMB=60°,
此時DM的長為(400-45-30)米.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線 y=ax2﹣5ax+c 交 x 軸于點 A,點 A 的坐標為(4,0).
(1)用含 a 的代數式表示 c.
(2)當 a=時,求 x 為何值時 y 取得最小值,并求出 y 的最小值.
(3)當 a=時,求 0≤x≤6 時 y 的取值范圍.
(4)已知點 B 的坐標為(0,3),當拋物線的頂點落在△AOB 外接圓內部時,直接寫出 a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,將拋物線y=﹣x2平移后經過點A(﹣1,0)、B(4,0),且平移后的拋物線與y軸交于點C(如圖).
(1)求平移后的拋物線的表達式;
(2)如果點D在線段CB上,且CD=,求∠CAD的正弦值;
(3)點E在y軸上且位于點C的上方,點P在直線BC上,點Q在平移后的拋物線上,如果四邊形ECPQ是菱形,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角△ABC內接于⊙O,點D是直角△ABC斜邊AB上的一點,過點D作AB的垂線交AC于E,過點C作∠ECP=∠AED,CP交DE的延長線于點P,連結PO交⊙O于點F.
(1)求證:PC是⊙O的切線;
(2)若PC=3,PF=1,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l的解析式是y=x-4,并且與x軸、y軸分別交于A,B兩點.一個半徑為1.5的☉C,圓心C從點(0,1.5)開始以每秒移動0.5個單位長度的速度沿著y軸向下運動,當☉C與直線l相切時,則該圓運動的時間為( )
A. 3 s或6 sB. 6 s或10 sC. 3 s或16 sD. 6 s或16 s
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于點E、F、G,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為( 。
A. B. C. D. 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場用2700元購進甲、乙兩種商品共100件,這兩種商品的進價、標價如下表所示:
甲種 | 乙種 | |
進價(元/件) | 15 | 35 |
標價(元/件) | 20 | 45 |
(1)求購進兩種商品各多少件?
(2)商品將兩種商品全部賣出后,獲得的利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在菱形ABCD中,對角線AC與BD相交于點O,AB=13,BD=24,在菱形ABCD的外部以AB為邊作等邊三角形 ABE.點F是對角線BD上一動點(點F不與點B重合),將線段AF繞點A順時針方向旋轉60°得到線段AM,連接FM.
(1)求AO的長;
(2)如圖2,當點F在線段BO上,且點M,F(xiàn),C三點在同一條直線上時,求證:AC=AM;
(3)連接EM,若△AEM的面積為40,請直接寫出△AFM的周長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com