(2002•湘西州)在Rt△ABC中,∠C=90°,a=3,b=4,則c=    ,斜邊上的中線長為   
【答案】分析:根據(jù)勾股定理可求得斜邊的長,從而不難求得斜邊上的中線.
解答:解:∵在Rt△ABC中,∠C=90°,a=3,b=4
∴c=5
∴斜邊上的中線長為2.5
點評:本題主要考查了勾股定理,以及直角三角形斜邊上的中線等于斜邊的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2002•湘西州)如圖,在直角坐標(biāo)系中,以x軸上一點P(1,0)為圓心的圓與x軸、y軸分別交于A、B、C、D四點,連接CP,∠APC=60度.
(1)求⊙P的半徑R;
(2)求A、B、D三點坐標(biāo);
(3)若過弧CB的中點Q作⊙P的切線MN交x軸于M,交y軸于N,求直線MN的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2002•湘西州)己知一次函數(shù)y=3-kx.當(dāng)x=2時,y=-1
(1)求y與x的函數(shù)關(guān)系式.
(2)指出此函數(shù)的圖象不經(jīng)過哪個象限?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年湖南省湘西州中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•湘西州)如圖,在直角坐標(biāo)系中,以x軸上一點P(1,0)為圓心的圓與x軸、y軸分別交于A、B、C、D四點,連接CP,∠APC=60度.
(1)求⊙P的半徑R;
(2)求A、B、D三點坐標(biāo);
(3)若過弧CB的中點Q作⊙P的切線MN交x軸于M,交y軸于N,求直線MN的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年湖南省湘西州中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•湘西州)己知一次函數(shù)y=3-kx.當(dāng)x=2時,y=-1
(1)求y與x的函數(shù)關(guān)系式.
(2)指出此函數(shù)的圖象不經(jīng)過哪個象限?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2002•湘西州)附加題:(計入總分)己知EF是半徑為3cm的⊙O中的一條弦,且EF=4cm.P是⊙O上優(yōu)弧EF上一動點(與E、F均不重合〕.
(1)求sin∠EPF的值;
(2)問是否存在以E、F、P為頂點的面積最大的三角形,試說明理由.若存在,請求出這個三角形的面積.

查看答案和解析>>

同步練習(xí)冊答案