【題目】如圖,正方形ABCD中,點(diǎn)E為對(duì)角線AC上一點(diǎn),且AECB,連接DE并延長(zhǎng)交BC于點(diǎn)G,過(guò)點(diǎn)AAHBE于點(diǎn)H,交BC于點(diǎn)F.以下結(jié)論:①BHHE;②∠BEG45°;③△ABF ≌△DCG; 4BH2BG·CD.其中正確結(jié)論的個(gè)數(shù)是( )

A.1個(gè)B.2

C.3D.4

【答案】D

【解析】

利用正方形的性質(zhì)得到AB=BC=AE,由此得到判斷①正確;先求出∠BAC=DAC=45°,利用等腰三角形的性質(zhì)求出∠AEB=AED=,再根據(jù)對(duì)頂角相等及平角求出∠BEG,由此判斷②;根據(jù)等腰三角形的三線合一的性質(zhì)求出∠BAF=,推出∠DGC=AFB,即可判斷③;證明△BEG∽△DCE,即可判斷④

∵四邊形ABCD是正方形,

AB=BC,

AE=CB,

AE=AB

AHBE

BH=HE,即①正確;

AC是正方形ABCD的對(duì)角線,

∴∠BAC=DAC=45°

AE=AB=AD,

∴∠AEB=AED=

∴∠CEG=AED=67.5°,

∴∠BEG=180°-AEB-CEG=45°,故②正確;

AB=AEAHBE,

∴∠BAF=

ADBC

∴∠DGC=ADE

∴∠AFB=DGC,

又∵AB=DC,∠DCG=

∴△ABF ≌△DCG,故③正確;

BC=DC,∠BCE=DCE=45°,CE=CE,

∴△BCE≌△DCE,

BE=DE,∠CBE=CDE,

∵∠BEG=DCE=45°

∴△BEG∽△DCE,

DE=BE=2BH,

4BH2BG·CD,故④正確,

故正確的有①②③④,

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李回鄉(xiāng)創(chuàng)業(yè),銷售一種批發(fā)價(jià)為4/千克的水產(chǎn)品.根據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),此種水產(chǎn)品的年銷售量y(萬(wàn)千克)與售價(jià)x(元/千克)之間的關(guān)系如圖所示:

1)求出銷售此種水產(chǎn)品的年銷售量y與售價(jià)x之間的函數(shù)表達(dá)式;

2)市場(chǎng)調(diào)查還發(fā)現(xiàn):銷售此種水產(chǎn)品需要先投入成本10萬(wàn)元(不含以批發(fā)價(jià)購(gòu)入這種水產(chǎn)品所需資金),如果市場(chǎng)管理部門(mén)規(guī)定此種水產(chǎn)品的銷售價(jià)不準(zhǔn)超過(guò)20/千克,求銷售此種水產(chǎn)品售價(jià)為多少元時(shí),獲得的年利潤(rùn)最大?最大年利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB⊙O的直徑,DM⊙O于點(diǎn)D,過(guò)點(diǎn)AAE⊥DM,垂足為E,交⊙O于點(diǎn)C,連接AD

1)求證:AD∠BAC的平分線;

2)連接CD,若,半徑為5,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABO的直徑,DAO的切線,切點(diǎn)為A,過(guò)O上的點(diǎn)CCDABAD于點(diǎn)D,連接BC、AC

1)如圖,若DCO的切線,切點(diǎn)為C,求∠ACD和∠DAC的大小.

2)如圖,當(dāng)CDO的割線且與O交于點(diǎn)E時(shí),連接AE,若∠EAD30°,求∠ACD和∠DAC的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點(diǎn),FAD延長(zhǎng)線上一點(diǎn),且DF=BE

1)求證:CE=CF

2)若點(diǎn)GAD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,0)m0,點(diǎn)B與點(diǎn)A 關(guān)于原點(diǎn)對(duì)稱,直線與雙曲線交于C,D兩點(diǎn).

(1)直接判斷后填空:四邊形ACBD的形狀一定是

(2)若點(diǎn)D(1,t),求雙曲線的解析式;

(3)(2)的前提下,四邊形ACBD為矩形時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某兒童游樂(lè)園推出兩種門(mén)票收費(fèi)方式:

方式一:購(gòu)買(mǎi)會(huì)員卡,每張會(huì)員卡費(fèi)用是元,憑會(huì)員卡可免費(fèi)進(jìn)園次,免費(fèi)次數(shù)用完以后,每次進(jìn)園憑會(huì)員卡只需元;

方式二:不購(gòu)買(mǎi)會(huì)員卡,每次進(jìn)園是(兩種方式每次進(jìn)園均指單人)設(shè)進(jìn)園次數(shù)為( 為非負(fù)整數(shù))

1)根據(jù)題意,填寫(xiě)下表:

進(jìn)園次數(shù)()

···

方式一收費(fèi)()

···

方式二收費(fèi)()

···

2)設(shè)方式一收費(fèi)元,方式二收費(fèi)元,分別寫(xiě)出關(guān)于的函數(shù)關(guān)系式;;

3)當(dāng)時(shí),哪種進(jìn)園方式花費(fèi)少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:

甲公司為基本工資+攬件提成,其中基本工資為70/日,每攬收一件提成2元;

乙公司無(wú)基本工資,僅以攬件提成計(jì)算工資.若當(dāng)日攬件數(shù)不超過(guò)40,每件提成4元;若當(dāng)日攪件數(shù)超過(guò)40,超過(guò)部分每件多提成2元.

如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計(jì)圖:

(1)現(xiàn)從今年四月份的30天中隨機(jī)抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過(guò)40(不含40)的概率;

(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的

攬件數(shù),解決以下問(wèn)題:

①估計(jì)甲公司各攬件員的日平均件數(shù);

②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)知識(shí)幫他選擇,井說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2bxca≠0)的對(duì)稱軸為直線x=-2,與x軸的一個(gè)交點(diǎn)在(-3,0)和(-40)之間,其部分圖象如圖所示.則下列結(jié)論:①4ab0;②c<0;③-3ac>0;④4a2b>at2btt為實(shí)數(shù));⑤點(diǎn),是該拋物線上的點(diǎn),則y1<y2<y3.其中正確結(jié)論的個(gè)數(shù)是( 。

A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案