【題目】如圖,為了測量某建筑物BC的高度,小明先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地而上向建筑物前進了50m到達D處,此時遇到一斜坡,坡度i=1: ,沿著斜坡前進20米到達E處測得建筑物頂部的仰角是45°,(坡度i=1: 是指坡面的鉛直高度FE與水平寬度DE的比).請你計算出該建筑物BC的高度.(取=1.732,結(jié)果精確到0.1m).

【答案】建筑物BC的高度是28.3米.

【解析】試題分析:過E作EF⊥AB于F,EG⊥BC與G,根據(jù)矩形的性質(zhì)得到四邊形EG=FB,EF=BG,設(shè)CG=x,根據(jù)已知條件得到∠EDF=30°及直角三角形得到DF=20cos30°=10,BG=EF=20sin30°=10,AB=50+10+x,BC=x+10,在Rt△ABC中,根據(jù)三角函數(shù)的定義列方程即可得到結(jié)論.

試題解析:過EEFABF,EGBCG

CBAB,

∴四邊形EFBG是矩形,

EG=FB,EF=BG,

設(shè)CG=x米,∵∠CEG=45°

FB=EG=CG=x,

DE的坡度i=1 ,

∴∠EDF=30°

DE=20,

DF=20cos30°=10,BG=EF=20sin30°=10

AB=50+10+x,BC=x+10

RtABC中,

∵∠A=30°,

BC=ABtanA,即x+10=50+10+x),

解得:x≈18.3,

BC=28.3米,

答:建筑物BC的高度是28.3米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=9,AC=6,BC=12,點MAB邊上,且AM=3,過點M作直線MNAC邊交于點N,使截得的三角形與原三角形相似,則MN=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,斜坡AP的坡度為124,坡長AP26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°.求:

1)坡頂A到地面PQ的距離;

2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈097cos76°≈024,tan76°≈401

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線,直線分別交于C、D兩點,點P是直線上的一動點.

(1)如圖,若動點P在線段CD之間運動(不與C、D兩點重合),問在點P的運動過程中是否始終具有這一相等關(guān)系?試說明理由;

(2)如圖,當動點P在線段CD之外且在的上方運動(不與C、D兩點重合),則上述結(jié)論是否仍成立?若不成立,試寫出新的結(jié)論,并說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,下列條件中,能判斷ABCD的是(

A. BAD=BCD B. 1=2 C. 3=4 D. BAC=ACD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項式2a2-4ab+2b2分解因式的結(jié)果是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果下列各組數(shù)是三角形的三邊長,那么不能組成直角三角形的一組數(shù)是(
A.6,8,10
B.4,5,6
C. ,1,
D. ,4,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2x13,求代數(shù)式(x3)22x(3x)7的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD、EF相交于點O,EFAB,OGCOF的平分線,OHDOG的平分線.

(1)AOCCOG=47,求DOF的大;

(2)AOCDOH=829,求COH的大小.

查看答案和解析>>

同步練習冊答案