【題目】P是三角形ABC內(nèi)一點,射線PDAC,射線PEAB

1)當點D,E分別在AB,BC上時,

補全圖1;

猜想∠DPE與∠A的數(shù)量關系,并證明;

2)當點D,E都在線段BC上時,你在(1)中所得結論是否仍然成立?若成立,請證明;若不成立,請說明理由.

【答案】1補全圖形,如圖所示.見解析;DPE+A180°,證明見解析;(2)不成立,此時∠DPE=∠A.理由見解析.

【解析】

1)根據(jù)平行線的性質(zhì),即可得到∠A=∠BDP,∠DPE+BDP180°,即可得到∠DPE與∠A的數(shù)量關系.

2)先反向延長射線PDAB于點D1,可知∠DPE+D1PE180°,由(1)結論可知∠D1PE+A180°,進而得出∠DPE=∠A

1)①補全圖形,如圖1所示.

②∠DPE+A180°

證明:∵PDAC,

∴∠A=∠BDP

PEAB

∴∠DPE+BDP180°,

∴∠DPE+A180°

2)不成立,此時∠DPE=∠A

理由如下:如圖2,反向延長射線PDAB于點D1,可知∠DPE+D1PE180°

由(1)結論可知∠D1PE+A180°

∴∠DPE=∠A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一輛客車從甲地開往乙地,一輛轎車從乙地開往甲地,兩車同時出發(fā),兩車行駛x小時后,記客車離甲地的距離y1千米,轎車離甲地的距離y2千米,y1y2關于x的函數(shù)圖象如圖所示:

①根據(jù)圖象直接寫出y1、y2關于x的函數(shù)關系式;

②當兩車相遇時,求此時客車行駛的時間.

③相遇后,兩車相距200千米時,求客車又行駛的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】其工廠甲.乙兩個部門各有員工人,為了解這兩個部門員工的生產(chǎn)技能情況,進行了抽樣調(diào)查,過程如下,請補充完整.

收集數(shù)據(jù)

從甲、乙兩個部門各隨機抽取名員工進行了生產(chǎn)技能測試,測試成績(百分制)如下:

甲:78 86 74 81 75 76 87 70 75 90

75 79 81 70 74 80 86 69 83 77

乙:93 73 88 81 72 81 94 83 77 83

80 81 70 81 73 78 82 80 70 40

整理、描述數(shù)據(jù)

1)按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):

成績?nèi)藬?shù)部門

(說明:成績分及以上為生產(chǎn)技能優(yōu)秀,分為生產(chǎn)技能良好,分為生產(chǎn)技能合格,分以下為生產(chǎn)技能不合格)

2)若按照甲部門的樣本數(shù)據(jù),在列頻數(shù)分布表時,若取組距為,則這小組的頻數(shù)為    ,頻率為    

3)若按照乙部門的樣本數(shù)據(jù)畫出扇形統(tǒng)計圖,則表示生產(chǎn)技能優(yōu)秀部分的圓心角是    度;

得出結論:

4)估計乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為    ;

5)可以推斷出部門員工的生產(chǎn)技能水平較高,你的理由為    (說出一條即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖(1),在正方形一邊上取中點,并沿虛線剪開,用兩塊圖形拼一拼,能否拼出平行四邊形、梯形或三角形?畫圖解釋你的判斷.

2)如圖(2E為正方形ABCDBC的中點,FDC的中點,BFAE有何關系?請解釋你的結論。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,二次函數(shù)的圖象與坐標軸交于, , 三點,其中點的坐標為,點的坐標為,連接, .動點從點出發(fā),在線段上以每秒個單位長度的速度向點作勻速運動;同時,動點從點出發(fā),在線段上以每秒個單位長度的速度向點作勻速運動,當其中一點到達終點時,另一點隨之停止運動,設運動時間為秒.連接

)填空: __________, __________

)在點, 運動過程中, 可能是直角三角形嗎?請說明理由.

)在軸下方,該二次函數(shù)的圖象上是否存在點,使是以點為直角頂點的等腰直角三角形?若存在,請求出運動時間;若不存在,請說明理由.

)如圖②,點的坐標為,線段的中點為,連接,當點關于直線的對稱點恰好落在線段上時,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD中,以BF為底向正方形外側作等腰直角三角形BEF,連接DF,取DF的中點G,連接EG,CG.

(1)如圖1,當點A與點F重合時,猜想EGCG的數(shù)量關系為   ,EGCG的位置關系為   ,請證明你的結論.

(2)如圖2,當點FAB上(不與點A重合)時,(1)中結論是否仍然成立?請說明理由;如圖3,點FAB的左側時,(1)中的結論是否仍然成立?直接做出判斷,不必說明理由.

(3)在圖2中,若BC=4,BF=3,連接EC,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知DE∥BC,∠3=∠B,∠1+∠2=180°.下面是王寧同學的思考過程,請你在括號內(nèi)填上理由、依據(jù)或內(nèi)容。

思考過程

因為 DE∥BC(已知)

所以∠3=∠EHC

因為∠3=∠B(已知)

所以∠B=∠EHC

所以 AB∥EH

∠2+ =180°

因為∠1=∠4

所以∠1+∠2=180°(等量代換)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一副三角尺按圖①所示的方式疊放在一起,現(xiàn)將含45°角的三角尺ADE固定不動,把含30°角的三角尺ABC繞頂點A順時針旋轉角α(α=∠BADα180°),使兩塊三角尺至少有一組邊平行.

(1)如圖②,當α________°時,BCDE.

(2)請你分別在圖③,④中,各畫一種符合要求的圖形,標出α,并完成下列各題.

圖③中,當α________°時,________________

圖④中,當α________°時,________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,拋物線x軸于AB兩點,交y軸于點C,且對稱軸為x=2,點P0,t)是y軸上的一個動點.

1)求拋物線的解析式及頂點D的坐標.

2)如圖1,當0≤t≤4時,設PAD的面積為S,求出St之間的函數(shù)關系式;S是否有最小值?如果有,求出S的最小值和此時t的值.

3)如圖2,當點P運動到使PDA=90°時,RtADPRtAOC是否相似?若相似,求出點P的坐標;若不相似,說明理由.

查看答案和解析>>

同步練習冊答案