【題目】二次函數(shù) 的圖象與 軸交于 (1, 0), 兩點,與 軸交于點 ,其頂點 的坐標為(-3, 2).

(1)求這二次函數(shù)的關(guān)系式;
(2)求 的面積.

【答案】
(1)解:∵二次函數(shù)y=ax2+bx+c的圖象的頂點D的坐標為(-3,2),

∴設拋物線解析式為頂點式y(tǒng)=a(x+3)2+2(a≠0),

把點A(1,0)代入,得

a(1+3)2+2=0,

解得,a=-

則拋物線的解析式為:y=- (x+3)2+2


(2)解:∵二次函數(shù)y=- (x+3)2+2的圖象與x軸交于A(1,0)、B兩點,頂點D的坐標為(-3,2),

∴點B的橫坐標是2×(-3)-1=-7,則B(-7,0).

令x=0,則y= ,

∴C(0, ).

易求直線BC的解析式為:y= x+

∴當x=-3時,y= ,

∴PD=2- =1.5,

∴△PBC的面積= PDOB= ×1.5×7=5.25


【解析】(1)由二次函數(shù)y=ax2+bx+c的圖象的頂點D的坐標為(-3,2),得到頂點式,把A點的坐標代入頂點式,求出a的值,得到拋物線的解析式;(2)由二次函數(shù)的圖象與x軸交于A、B兩點和頂點D的坐標,求出點B的坐標,得到點C的坐標,求出直線BC的解析式,求出ΔBCD的面積.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】利用完全平方公式進行因式分解,解答下列問題:

因式分解:

填空: ①當時,代數(shù)式_

②當_ 時,代數(shù)式

③代數(shù)式的最小值是_

拓展與應用:求代數(shù)式的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 中, ,tan ,AB=6cm.動點P從點A開始沿邊AB向點B以1 cm/s的速度移動,動點Q從點B開始沿邊BC向點C以2cm/s的速度移動.若P,Q兩點分別從A,B兩點同時出發(fā),在運動過程中, 的最大面積是( )

A.18cm2
B.12cm2
C.9cm2
D.3cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O 為坐標原點,長方形 OABC,點 B 的坐標為(3,8),點 A、C 分別在坐標軸上,D OC 的中點.

1)在 x 軸上找一點 P,使得 PDPB 最小,則點 P 的坐標為

2)在 x 軸上找一點 Q,使得|QDQB|最大,求出點 Q 的坐標并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2-6ax+4a+3的圖像與y軸交于點A,點B是x軸上一點,其坐標為(1,0),連接AB,tan∠ABO=2.

(1)則點A的坐標為 , a=;
(2)過點A作AB的垂線與該二次函數(shù)的圖像交于另一點C,求點C的坐標;
(3)連接BC,過點A作直線l交線段BC于點P,設點B、點C到l的距離分別為d1、d2 , 求d1+d2的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生“自主學習、合作交流” 的情況,對某班部分同學進行了一段時間的跟蹤調(diào)查,將調(diào)查結(jié)果(A:特別好;B:好;C:一般;D:較差)繪制成以下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中,求 類所占圓心角的度數(shù);
(3)學校想從被調(diào)查的 類(1名男生2名女生)和D類(男女生各占一半)中分別選取一位同學進行“一幫一”互助學習,請用畫樹形圖或列表的方法求所選的兩位同學恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,ABCDE為直線CD下方一點,BF平分ABE

1)求證:ABE+∠CE180°

2)如圖2,EG平分BEC,過點BBHGE,求FBHC之間的數(shù)量關(guān)系.

3)如圖3,CN平分ECD,若BF的反向延長線和CN的反向延長線交于點M,且E+∠M130°,請直接寫出E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M在線段BC上,點EN在線段AC上,EMAB,BEMN分別平分∠ABC和∠EMC.下列結(jié)論:①∠MBN=∠MNB;②∠MBE=∠MEB;③MNBE.其中正確的是( )

A.①②③B.②③C.①③D.①②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,Aa,0),Bb,0),C(﹣1,c)(見圖1),且

1)求a、b、c的值;

2x軸的正半軸上存在一點M,使三角形COM的面積是三角形ABC的面積的一半,求出點M的坐標;

在坐標軸的其它位置是否存在點M,使三角形COM的面積三角形ABC的面積的一半仍然成立? 若存在,請直接寫出符合條件的點M的坐標;

3)如圖2,過點CCDy軸交y軸于點D,點P為線段CD延長線上的一動點,連接OP,OE平分∠AOP,OFOE.當點P運動時,的值是否會改變?若不變,求其值;若改變,說明理由.

查看答案和解析>>

同步練習冊答案