【題目】△ABC中,∠BAC>90°,∠ACB=∠ABC=α,點D為BC邊上任意一點,點E在AD延長線上,且BC=BE.
(1)當α=30°,點D恰好為BC中點時,補全圖1,求∠BEA的度數(shù);
(2)如圖2,若∠BAE=2α,此時恰好DB=DE,連接CE,求證:△ABE≌△CEB.
【答案】(1)30°(2)證明見解析
【解析】
(1)只要證明AE⊥BC,△BCE是等邊三角形即可解決問題;
(2)如圖2中,延長CA到F,使得BF=BC,則BF=BE=BC,連接BF,作BM⊥AF于M,BN⊥AE于N,只要證明Rt△BMF≌Rt△BNE,推出∠BEA=∠F,由BF=BC,推出∠F=∠C=α,推出∠BEA=α即可.
(1)補全圖1,如圖所示.
∵AB=AC,BD=DC,
∴AE⊥BC,
∴EB=EC,∠ADB=90°,
∵∠ABC=30°,
∴∠BAE=60°
∵BC=BE,
∴△BCE是等邊三角形,∠DEB=∠DEC,
∴∠BEA=30°;
(2)延長CA到F,使得BF=BC,則BF=BE=BC,連接BF,作BM⊥AF于M,BN⊥AE于N,
∵∠ACB=∠ABC=α,
∴∠FAB=∠ABC+∠ACB=2α,
∵∠BAE=2α,
∴∠MAB=∠NAB,
∴BM=BN,
在Rt△BMF與Rt△BNE中,
,
∴Rt△BMF≌Rt△BNE(HL),
∴∠F=∠AEB,
∵BF=BC,
∴∠F=∠ACB=α,
∴∠AEB=α,
∴∠ACB=∠AEB,
∴A,B,E,C四點共圓,
∴∠BAE=∠ECB,
在△ABE與△CEB中,
,
∴ABE≌△CEB(AAS).
科目:初中數(shù)學 來源: 題型:
【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點E,A F∥CE,且交BC于點F.
(1)求證:△ABF≌△CDE;
(2)如圖,若∠1=65°,求∠B的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】母親節(jié)即將來臨,“花之語”鮮花店準備購買A,B兩種鮮花禮盒,A型禮盒每盒成本為40元,售價為65元,B型禮盒每盒成本是60元,售價是100元,
(1)該花店原計劃購進兩種禮盒共80盒,若全部銷售,要使總利潤不低于2750元,該花店原計劃最多購進多少盒A型禮盒?
(2)為了獲得更多的利潤,花店負責人決定在實際的銷售中將B型禮盒的售價下調(diào),A型禮盒的價格不變,根據(jù)市場情況分析,相應的兩種禮盒的銷售量與(1)中獲得最低利潤的銷售量相比,A型禮盒的銷售量增加了,B型禮盒的銷售量增加了30盒,這樣恰好獲得3300元利潤,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】周六上午,小亮去圖書館查資料,圖書館離家不遠,他步行去圖書館,查完資料后他又邊走邊轉(zhuǎn)去書店買書,在書店停留了幾分鐘后騎共享單車回家."已知小亮離家的距離(米)與離開家的時間(分)之間的關系如圖所示.請根據(jù)圖象回答下列問題:
(1)小亮出發(fā)幾分鐘后到達圖書館?
(2)小亮查完資料后步行的速度是多少?
(3)小亮離開圖書館,幾點回到家?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“道路交通管理條例”規(guī)定:小汽車在城街上行駛速度不得超過70千米/小時,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面對車速檢測儀A正前方30米B處,過了2秒后,測得小汽車C與車速檢測儀A間距離為50米,這輛小汽車超速了嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(﹣1,0),B(3,0),與y軸交于點C(0,3).
(1)求該拋物線所對應的函數(shù)關系式;
(2)設拋物線上的一個動點P的橫坐標為t(0<t<0),過點P作PD⊥BC于點D.
①求線段PD的長的最大值;②當BD=2CD時,求t的值;
(3)若點Q是拋物線的對稱軸上的動點,拋物線上存在點M,使得以B、C、Q、M為頂點的四邊形為平行四邊形,請求出所有滿足條件的點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖中的小方格都是邊長為1的正方形,
①直接寫出△ABC的各頂點坐標:
A(____,___),B(______,_______),C(______,_______);
②畫出△ABC關于y軸的對稱圖形△A1B1C1;
③直接寫出△ABC關于x軸對稱的△A2B2C2的頂點A2(_____,____)B2(____,____)(其中A2與A對應,B2與B對應,不必畫圖.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,四邊形OABC為矩形,點A的坐標為(4,0),點B的坐標為(4,3),動點M,N分別從O、B同時出發(fā),以每秒1個單位長度的速度運動,其中,點M沿OA向終點A運動,點N沿BC向終點C運動,過點M作MP⊥OA,交AC于P,連接NP.下列說法①當點M運動了2秒時,點P的坐標為(2, );②當點M運動 秒時,△NPC是等腰三角形;③當點N運動了2秒時,△NPC的面積將達到最大值.其中正確的有 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為迎接中國森博會,某商家計劃從廠家采購A,B兩種產(chǎn)品共20件,產(chǎn)品的采購單價(元/件)是采購數(shù)量(件)的一次函數(shù),下表提供了部分采購數(shù)據(jù).
采購數(shù)量(件) | 1 | 2 | … |
A產(chǎn)品單價(元/件) | 1480 | 1460 | … |
B產(chǎn)品單價(元/件) | 1290 | 1280 | … |
(1)設A產(chǎn)品的采購數(shù)量為x(件),采購單價為y1(元/件),求y1與x的關系式;
(2)經(jīng)商家與廠家協(xié)商,采購A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的 ,且A產(chǎn)品采購單價不低于1200元,求該商家共有幾種進貨方案;
(3)該商家分別以1760元/件和1700元/件的銷售單價售出A,B兩種產(chǎn)品,且全部售完,在(2)的條件下,求采購A種產(chǎn)品多少件時總利潤最大,并求最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com