【題目】計算:
(1)+(﹣3)2﹣( ﹣1)0
(2)化簡:(2+m)(2﹣m)+m(m﹣1).
【答案】
(1)
解:原式=2 +9﹣1
=2 +8;
(2)
解:(2+m)(2﹣m)+m(m﹣1)
=4﹣m2+m2﹣m
=4﹣m.
【解析】(1)直接利用二次根式的性質(zhì)結合零指數(shù)冪的性質(zhì)分別分析得出答案;
(2)直接利用平方差公式計算,進而去括號得出答案.此題主要考查了實數(shù)運算以及整式的混合運算,正確化簡各數(shù)是解題關鍵.
【考點精析】利用零指數(shù)冪法則和實數(shù)的運算對題目進行判斷即可得到答案,需要熟知零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));先算乘方、開方,再算乘除,最后算加減,如果有括號,先算括號里面的,若沒有括號,在同一級運算中,要從左到右進行運算.
科目:初中數(shù)學 來源: 題型:
【題目】已知:關于x的一元二次方程mx2-3(m-1)x+2m-3=0(m>3).
(1)求證:方程總有兩個不相等的實數(shù)根;
(2)設方程的兩個實數(shù)根分別為x1,x2,且x1<x2.
①求方程的兩個實數(shù)根x1,x2(用含m的代數(shù)式表示);
②若mx1<8-4x2,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(4分)如圖,直線l外不重合的兩點A、B,在直線l上求作一點C,使得AC+BC的長度最短,作法為:①作點B關于直線l的對稱點B′;②連接AB′與直線l相交于點C,則點C為所求作的點.在解決這個問題時沒有運用到的知識或方法是( )
A.轉化思想
B.三角形的兩邊之和大于第三邊
C.兩點之間,線段最短
D.三角形的一個外角大于與它不相鄰的任意一個內(nèi)角
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】世界上大部分國家都使用攝氏溫度(℃),但美國,英國等國家的天氣預報都使用華氏溫度(℉),兩種計量之間有如下對應:
攝氏溫度(℃) | … | 0 | 10 | … |
華氏溫度(℉) | … | 32 | 50 | … |
已知華氏溫度y(℉)是攝氏溫度x(℃)的一次函數(shù).
求該一次函數(shù)的解析式;
當華氏溫度14℉時,求其所對應的攝氏溫度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB邊上一動點,PD⊥AC于點D,點E在P的右側,且PE=1,連結CE.P從點A出發(fā),沿AB方向運動,當E到達點B時,P停止運動.在整個運動過程中,圖中陰影部分面積S1+S2的大小變化情況是( )
A.一直減小
B.一直不變
C.先減小后增大
D.先增大后減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】盛盛同學到某高校游玩時,看到運動場的宣傳欄中的部分信息(如下表):
院系籃球賽成績公告 | |||
比賽場次 | 勝場 | 負場 | 積分 |
22 | 12 | 10 | 34 |
22 | 14 | 8 | 36 |
22 | 0 | 22 | 22 |
盛盛同學結合學習的知識設計了如下問題,請你幫忙完成下列問題:
(1)從表中可以看出,負一場積______分,勝一場積_______分;
(2)某隊在比完22場的前提下,勝場總積分能等于其負場總積分的2倍嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在射線BA,BC,AD,CD圍成的菱形ABCD中,∠ABC=60°,AB=6 ,O是射線BD上一點,⊙O與BA,BC都相切,與BO的延長線交于點M.過M作EF⊥BD交線段BA(或射線AD)于點E,交線段BC(或射線CD)于點F.以EF為邊作矩形EFGH,點G,H分別在圍成菱形的另外兩條射線上.
(1)求證:BO=2OM.
(2)設EF>HE,當矩形EFGH的面積為24 時,求⊙O的半徑.
(3)當HE或HG與⊙O相切時,求出所有滿足條件的BO的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是∠AOB的邊OB上的一點.
(1)過點M畫OB的平行線MN;
(2)過點P畫OA的垂線,垂足為H;
(3)過點P畫OB的垂線,交OA于點C:
則線段PH的長度是點P到 的距離, 是點C到直線OB的距離,因為直線外一點到直線上各點連接的所有線段中,垂線段最短,所以線段PC、PH、OC這三條線段大小關系是 .(用“<”號連接).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com