【題目】計算:
(1)+(﹣3)2﹣( ﹣1)0
(2)化簡:(2+m)(2﹣m)+m(m﹣1).

【答案】
(1)

解:原式=2 +9﹣1

=2 +8;


(2)

解:(2+m)(2﹣m)+m(m﹣1)

=4﹣m2+m2﹣m

=4﹣m.


【解析】(1)直接利用二次根式的性質(zhì)結合零指數(shù)冪的性質(zhì)分別分析得出答案;
(2)直接利用平方差公式計算,進而去括號得出答案.此題主要考查了實數(shù)運算以及整式的混合運算,正確化簡各數(shù)是解題關鍵.
【考點精析】利用零指數(shù)冪法則和實數(shù)的運算對題目進行判斷即可得到答案,需要熟知零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));先算乘方、開方,再算乘除,最后算加減,如果有括號,先算括號里面的,若沒有括號,在同一級運算中,要從左到右進行運算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:關于x的一元二次方程mx2-3(m-1)x+2m-3=0(m>3).

(1)求證:方程總有兩個不相等的實數(shù)根;

(2)設方程的兩個實數(shù)根分別為x1,x2,且x1<x2

①求方程的兩個實數(shù)根x1,x2(用含m的代數(shù)式表示);

②若mx1<8-4x2,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(4分)如圖,直線l外不重合的兩點A、B,在直線l上求作一點C,使得AC+BC的長度最短,作法為:作點B關于直線l的對稱點B′;連接AB′與直線l相交于點C,則點C為所求作的點在解決這個問題時沒有運用到的知識或方法是(

A轉化思想

B三角形的兩邊之和大于第三邊

C兩點之間,線段最短

D三角形的一個外角大于與它不相鄰的任意一個內(nèi)角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】世界上大部分國家都使用攝氏溫度(℃),但美國,英國等國家的天氣預報都使用華氏溫度(),兩種計量之間有如下對應:

攝氏溫度(℃)

0

10

華氏溫度(℉)

32

50

已知華氏溫度y(℉)是攝氏溫度x(℃)的一次函數(shù).

求該一次函數(shù)的解析式;

當華氏溫度14℉時,求其所對應的攝氏溫度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB邊上一動點,PD⊥AC于點D,點E在P的右側,且PE=1,連結CE.P從點A出發(fā),沿AB方向運動,當E到達點B時,P停止運動.在整個運動過程中,圖中陰影部分面積S1+S2的大小變化情況是( )
A.一直減小
B.一直不變
C.先減小后增大
D.先增大后減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】盛盛同學到某高校游玩時,看到運動場的宣傳欄中的部分信息(如下表):

院系籃球賽成績公告

比賽場次

勝場

負場

積分

22

12

10

34

22

14

8

36

22

0

22

22

盛盛同學結合學習的知識設計了如下問題,請你幫忙完成下列問題:

(1)從表中可以看出,負一場積______,勝一場積_______;

(2)某隊在比完22場的前提下,勝場總積分能等于其負場總積分的2倍嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=15AC=13,BC邊上的高AD=12,則BC的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在射線BA,BC,AD,CD圍成的菱形ABCD中,∠ABC=60°,AB=6 ,O是射線BD上一點,⊙O與BA,BC都相切,與BO的延長線交于點M.過M作EF⊥BD交線段BA(或射線AD)于點E,交線段BC(或射線CD)于點F.以EF為邊作矩形EFGH,點G,H分別在圍成菱形的另外兩條射線上.
(1)求證:BO=2OM.
(2)設EF>HE,當矩形EFGH的面積為24 時,求⊙O的半徑.
(3)當HE或HG與⊙O相切時,求出所有滿足條件的BO的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是∠AOB的邊OB上的一點.

(1)過點MOB的平行線MN;

(2)過點POA的垂線,垂足為H;

(3)過點POB的垂線,交OA于點C:

則線段PH的長度是點P   的距離,   是點C到直線OB的距離,因為直線外一點到直線上各點連接的所有線段中,垂線段最短,所以線段PC、PH、OC這三條線段大小關系是   .(用“<”號連接).

查看答案和解析>>

同步練習冊答案