【題目】如圖,在正方形ABCD中,點E是對角線BD上任意一點,連接AE并延長AEBC的延長線于點F,交CD于點G

1)求證:∠DAE=∠DCE;

2)若∠F30°,DG2,求CG的長度.

【答案】1)見解析;(2CG22

【解析】

1)根據(jù)正方形的性質(zhì)得出∠ADE=∠CDE,ADCD,根據(jù)全等三角形的判定推出△ADE≌△CDE,則結(jié)論可得;

2)根據(jù)正方形的性質(zhì)得出ADDC,∠ADC90°,ADBC,求出∠F=∠DAG30°,解直角三角形求出AD,即可得出答案.

1)證明:∵四邊形ABCD是正方形,

∴∠ADE=∠CDEADCD,

在△ADE和△CDE

∴△ADE≌△CDESAS),

∴∠DAE=∠DCE;

2)解:∵四邊形ABCD是正方形,

ADDC,∠ADC90°,ADBC,

∴∠DAG=∠F,

∵∠F30°,

∴∠DAG30°,

DG2,

AG2DG4

由勾股定理得:AD2,

DCAD2,

CGCDDG22

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點D,E是半圓O上的三等分點,C是弧DE上的一個動點,連結(jié)ACBC,點IABC的內(nèi)心,若⊙O的半徑為3,當(dāng)點C從點D運動到點E時,點I隨之運動形成的路徑長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)與一次函數(shù)yax+c在同一坐標(biāo)系中的圖象大致為(   )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解本校學(xué)生平均每天的體育活動時間情況,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果人數(shù)分為A,B,C,D四個等級設(shè)活動時間為t(小時),At1,B1≤t1.5,C1.5≤t2Dt≥2,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.

請你根據(jù)圖中信息解答下列問題:

1)該校共調(diào)查了多少名學(xué)生;

2)將條形統(tǒng)計圖補充完整;

3)求出表示A等級的扇形圓心角的度數(shù);

4)在此次問卷調(diào)查中,甲班有2人平均每天大課間活動時間不足1小時,乙班有3人平均每天大課間活動時間不足1小時,若從這5人中任選2人去參加座談,試用列表或畫樹狀圖的方法求選出的2人來自不同班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在ABC中,ABAC,BDAC邊上的中線,AB13,BC10

1)求ABC的面積;

2)求tanDBC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB7,BC4,∠ABC45°,射線CDABD,點P為射線CD上一動點,以PD為直徑的⊙OPAPB分別為E、F,設(shè)CPx

1)求sinACD的值.

2)在點P的整個運動過程中:

①當(dāng)⊙O與射線CA相切時,求出所有滿足條件時x的值;

②當(dāng)x為何值時,四邊形DEPF為矩形,并求出矩形DEPF的面積.

3)如果將△ADC繞點D順時針旋轉(zhuǎn)150°,得△ADC′,若點A′和點C′有且只有一個點在圓內(nèi),則x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:規(guī)定maxa,b)=,例如:max(﹣1,2)=2,max33)=3

感知:已知函數(shù)ymaxx+1,﹣2x+4

1)當(dāng)x3時,y_____;

2)當(dāng)y3時,x______;

3)當(dāng)yx的增大而增大時,x的取值范圍為______

4)當(dāng)﹣1≤x≤4時,y的取值范圍為______;

探究:已知函數(shù)ymaxx+2)當(dāng)直線ymm為常數(shù))與函數(shù)ymaxx+2,)(﹣6x≤3)的圖象有兩個公共點時,m的取值范圍為_______;

拓展:已知函數(shù)ymax(﹣x2+2nx,﹣nx)(n為常數(shù)且n≠0),當(dāng)n3≤x≤2時,隨著x的增大,函數(shù)值y先減小后增大,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著私家車的增多,停車難成了很多小區(qū)的棘手問題.某小區(qū)為解決這個問題,擬建造一個地下停車庫.如圖是該地下停車庫坡道入口的設(shè)計示意圖,其中,入口處斜坡的坡角為,水平線.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標(biāo)志,以提醒駕駛員所駕車輛能否安全駛?cè)?/span>.請求出限制高度為多少米,(結(jié)果精確到,參考數(shù)據(jù):,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市民廣場有一個直徑16米的圓形噴水池,噴水池的周邊有一圈噴水頭(噴水頭高度忽略不計),各方向噴出的水柱恰好在噴水池中心的裝飾物OA的頂端A處匯合,水柱離中心3米處達(dá)最高5米,如圖所示建立直角坐標(biāo)系.王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的他站立時必須在離水池中心O________米以內(nèi).

查看答案和解析>>

同步練習(xí)冊答案