【題目】如圖,在平面直角坐標系中,長方形ABCD的頂點B在坐標原點,頂點A、C分別在y軸、x軸的負半軸上,其中,,將矩形ABCD繞點D逆時針旋轉(zhuǎn)得到矩形,點恰好落在x軸上,線段CD交于點E,那么點E的坐標為

A. B. C. D.

【答案】A

【解析】

連接BD,B'D,根據(jù)矩形ABCD繞點D逆時針旋轉(zhuǎn)得到矩形A'B'C'D,可得BDB'D,再根據(jù)DCBB',即可得到BCB'C2A'D,再判定△B'EC≌△DEA',得到B'EDE,設CEx,則B'EDE4x,根據(jù)RtB'EC中,,可得,求得x的值即可得到點E的坐標.

如圖,

連接BD,B′D

矩形ABCD繞點D逆時針旋轉(zhuǎn)得到矩形A′B′C′D,

∴BD=B′D,

∵DC⊥BB′,A(0,4),C(2,0),

∴BC=B′C=2=A′D,

∵∠B′CE=∠DA′E=∠B′EC=∠DEA′,

∴△B′EC△DEA′,

∴B′E=DE,

CE=x,則B′E=DE=4x

∵Rt△B′EC

解得x=32,

∴E(2,),

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,②分別是某吊車在吊一物品時的實物圖與示意圖,已知吊車底盤CD的高度為2米,支架BC的長為4米,且與地面成30°角. 吊繩AB與支架BC的夾角為80°,吊臂AC與地面成70°角,求吊車的吊臂頂端A距地面的高度是多少米?(精確到0.1米. 參考數(shù)據(jù):sin10°=cos80°≈0.17,cos10°=sin80°≈0.98,sin20°=cos70°≈0.34,tan70°≈2.75,sin70°≈0.94)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,ABC,AC=BC,∠A=30°,DAB邊上且ADC=45°.

(1)BCD的度數(shù);

(2)將圖中的BCD繞點B順時針旋轉(zhuǎn)得到BCD.當點D恰好落在BC邊上時,如圖所示,連接CC并延長交AB于點E

CCB的度數(shù);

求證CBD′≌CAE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了豐富學生的課外活動,某校決定購買100個籃球和aa>10)副羽毛球拍.經(jīng)調(diào)查發(fā)現(xiàn):甲、乙兩個體育用品商店以同樣的價格出售同種品牌的籃球和羽毛球拍.已知每個籃球比每副羽毛球拍貴25元,兩個籃球與三副羽毛球拍的費用正好相等.經(jīng)洽談,甲商店的優(yōu)惠方案是:每購買十個籃球,送一副羽毛球拍;乙商店的優(yōu)惠方案是:若購買籃球數(shù)超過80個,則購買羽毛球拍可打八折.

(1)設每個籃球x元,則每副羽毛球拍______元(用含x的代數(shù)表示);并求出每個籃球和每副羽毛球拍的價格分別是多少?

(2)請用含a的代數(shù)式分別表示出到甲商店和乙商店購買所花的費用;

(3)請你決策:在哪一家商店購買劃算?(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠CAB=90°,ADBC于點D,點EAB的中點,ECAD交于點G,點FBC上.

1)如圖1,若AC:AB=1:2,EFCB,求證:EF=CD;

2)如圖2,若AC:AB=1: ,EFCE,求EF: EG的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個由木條制作的長方形窗戶如圖所示,里面有6個小正方形,且右下角的正方形的邊長比中間最小的正方形的邊長多0.4米,若制作這個長方形窗戶需要的木條總長至少為a米,則a=________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,將一個邊長為2的正方形ABCD和一個長為2,寬為1的長方形CEFD拼在一起,構(gòu)成一個大的長方形ABEF,現(xiàn)將小長方形CEFD繞點C順時針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為α

1)當邊CD′恰好經(jīng)過EF的中點H時,求旋轉(zhuǎn)角α的大;

2)如圖2GBC中點,且α90°,求證:GD′=E′D;

3)小長方形CEFD繞點C順時針旋轉(zhuǎn)一周的過程中,△DCD′△BCD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的大。蝗舨荒,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】裝修公司給小紅家的窗戶設計了如圖所示的裝修方案,上方布料窗眉(陰影部分)由兩個半徑相同的四分之一圓組成.

(1)分別用整式表示窗眉用布和窗戶透光的面積.(窗框的面積忽略不計).

(2)觀察(1)中的結(jié)果,它們是單項式還是多項式?次數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知C,D為線段AB上的兩點,點M,N分別為ACBD的中點,若AB13CD5,求線段MN的長.

查看答案和解析>>

同步練習冊答案