相關(guān)習(xí)題
 0  128035  128043  128049  128053  128059  128061  128065  128071  128073  128079  128085  128089  128091  128095  128101  128103  128109  128113  128115  128119  128121  128125  128127  128129  128130  128131  128133  128134  128135  128137  128139  128143  128145  128149  128151  128155  128161  128163  128169  128173  128175  128179  128185  128191  128193  128199  128203  128205  128211  128215  128221  128229  366461 

科目: 來源:第27章《二次函數(shù)》中考題集(35):27.3 實踐與探索(解析版) 題型:解答題

如圖所示,將矩形OABC沿AE折疊,使點O恰好落在BC上F處,以CF為邊作正方形CFGH,延長BC至M,使CM=|CE-EO|,再以CM、CO為邊作矩形CMNO.
(1)試比較EO、EC的大小,并說明理由;
(2)令m=,請問m是否為定值?若是,請求出m的值;若不是,請說明理由;
(3)在(2)的條件下,若CO=1,CE=,Q為AE上一點且QF=,拋物線y=mx2+bx+c經(jīng)過C、Q兩點,請求出此拋物線的解析式;
(4)在(3)的條件下,若拋物線y=mx2+bx+c與線段AB交于點P,試問在直線BC上是否存在點K,使得以P、B、K為頂點的三角形與△AEF相似?若存在,請求直線KP與y軸的交點T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(35):27.3 實踐與探索(解析版) 題型:解答題

已知:t1,t2是方程t2+2t-24=0的兩個實數(shù)根,且t1<t2,拋物線y=x2+bx+c的圖象經(jīng)過點A(t1,0),B(0,t2).
(1)求這個拋物線的解析式;
(2)設(shè)點P(x,y)是拋物線上一動點,且位于第三象限,四邊形OPAQ是以O(shè)A為對角線的平行四邊形,求平行四邊形OPAQ的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,當(dāng)平行四邊形OPAQ的面積為24時,是否存在這樣的點P,使?OPAQ為正方形?若存在,求出P點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(35):27.3 實踐與探索(解析版) 題型:解答題

如圖1,拋物線y=x2-2x+k與x軸交于A、B兩點,與y軸交于點C(0,-3).[圖2、圖3為解答備用圖]

(1)k=______,點A的坐標(biāo)為______,點B的坐標(biāo)為______;
(2)設(shè)拋物線y=x2-2x+k的頂點為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點D,使四邊形ABDC的面積最大?若存在,請求出點D的坐標(biāo);若不存在,請說明理由;
(4)在拋物線y=x2-2x+k上求點Q,使△BCQ是以BC為直角邊的直角三角形.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(35):27.3 實踐與探索(解析版) 題型:解答題

如圖所示,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點C.
(1)求A、B、C三點的坐標(biāo);
(2)過點A作AP∥CB交拋物線于點P,求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在一點M,過M作MG⊥x軸于點G,使以A、M、G三點為頂點的三角形與△PCA相似?若存在,請求出M點的坐標(biāo);否則,請說明理由.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(35):27.3 實踐與探索(解析版) 題型:解答題

如圖,拋物線F:y=ax2+bx+c的頂點為P,拋物線F與y軸交于點A,與直線OP交于點B.過點P作PD⊥x軸于點D,平移拋物線F使其經(jīng)過點A、D得到拋物線F′:y=a′x2+b′x+c′,拋物線F′與x軸的另一個交點為C.
(1)當(dāng)a=1,b=-2,c=3時,求點C的坐標(biāo)(直接寫出答案);
(2)若a、b、c滿足了b2=2ac
①求b:b′的值;
②探究四邊形OABC的形狀,并說明理由.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(35):27.3 實踐與探索(解析版) 題型:解答題

如圖,拋物線y=a(x+3)(x-1)與x軸相交于A、B兩點(點A在點B右側(cè)),過點A的直線交拋物線于另一點C,點C的坐標(biāo)為(-2,6).
(1)求a的值及直線AC的函數(shù)關(guān)系式;
(2)P是線段AC上一動點,過點P作y軸的平行線,交拋物線于點M,交x軸于點N.
①求線段PM長度的最大值;
②在拋物線上是否存在這樣的點M,使得△CMP與△APN相似?如果存在,請直接寫出所有滿足條件的點M的坐標(biāo)(不必寫解答過程);如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(35):27.3 實踐與探索(解析版) 題型:解答題

在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,且點A(0,2),點C(-1,0),如圖所示:拋物線y=ax2+ax-2經(jīng)過點B.
(1)求點B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(35):27.3 實踐與探索(解析版) 題型:解答題

如圖,Rt△ABC的頂點坐標(biāo)分別為A(0,),B(,),C(1,0),∠ABC=90°,BC與y軸的交點為D,D點坐標(biāo)為(0,),以點D為頂點y軸為對稱軸的拋物線過點B.
(1)求該拋物線的解析式.
(2)將△ABC沿AC折疊后得到點B的對應(yīng)點B',求證:四邊形AOCB'是矩形,并判斷點B'是否在(1)的拋物線上.
(3)延長BA交拋物線于點E,在線段BE上取一點P,過點P作x軸的垂線,交拋物線于點F,是否存在這樣的點P,使四邊形PADF是平行四邊形?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(35):27.3 實踐與探索(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知拋物線y=a(x+1)2+c(a>0)與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,其頂點為M,若直線MC的函數(shù)表達式為y=kx-3,與x軸的交點為N,且cos∠BCO=
(1)求此拋物線的函數(shù)表達式;
(2)在此拋物線上是否存在異于點C的點P,使以N、P、C為頂點的三角形是以NC為一條直角邊的直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
(3)過點A作x軸的垂線,交直線MC于點Q.若將拋物線沿其對稱軸上下平移,使拋物線與線段NQ總有公共點,則拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(35):27.3 實踐與探索(解析版) 題型:解答題

如圖①,在梯形ABCD中,CD∥AB,∠ABC=90°,∠DAB=60°,AD=2,CD=4.另有一直角三角形EFG,∠EFG=90°,點G與點D重合,點E與點A重合,點F在AB上,讓△EFG的邊EF在AB上,點G在DC上,以每秒1個單位的速度沿著AB方向向右運動,如圖②,點F與點B重合時停止運動,設(shè)運動時間為t秒.
(1)在上述運動過程中,請分別寫出當(dāng)四邊形FBCG為正方形和四邊形AEGD為平行四邊形時對應(yīng)時刻t的值或范圍;
(2)以點A為原點,以AB所在直線為x軸,過點A垂直于AB的直線為y軸,建立如圖③所示的坐標(biāo)系.求過A,D,C三點的拋物線的解析式;
(3)探究:延長EG交(2)中的拋物線于點Q,是否存在這樣的時刻t使得△ABQ的面積與梯形ABCD的面積相等?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案