相關(guān)習(xí)題
 0  145622  145630  145636  145640  145646  145648  145652  145658  145660  145666  145672  145676  145678  145682  145688  145690  145696  145700  145702  145706  145708  145712  145714  145716  145717  145718  145720  145721  145722  145724  145726  145730  145732  145736  145738  145742  145748  145750  145756  145760  145762  145766  145772  145778  145780  145786  145790  145792  145798  145802  145808  145816  366461 

科目: 來源:第2章《二次函數(shù)》?碱}集(24):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

二次函數(shù)y=x2的圖象如圖所示,過y軸上一點M(0,2)的直線與拋物線交于A,B兩點,過點A,B分別作y軸的垂線,垂足分別為C,D.
(1)當點A的橫坐標為-2時,求點B的坐標;
(2)在(1)的情況下,分別過點A,B作AE⊥x軸于E,BF⊥x軸于F,在EF上是否存在點P,使∠APB為直角?若存在,求點P的坐標;若不存在,請說明理由;
(3)當點A在拋物線上運動時(點A與點O不重合),求AC•BD的值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在Rt△ABC中,∠C=90°,AC=12,BC=16,動點P從點A出發(fā)沿AC邊向點C以每秒3個單位長的速度運動,動點Q從點C出發(fā)沿CB邊向點B以每秒4個單位長的速度運動.P,Q分別從點A,C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動.在運動過程中,△PCQ關(guān)于直線PQ對稱的圖形是△PDQ.設(shè)運動時間為t(秒).
(1)設(shè)四邊形PCQD的面積為y,求y與t的函數(shù)關(guān)系式;
(2)t為何值時,四邊形PQBA是梯形;
(3)是否存在時刻t,使得PD∥AB?若存在,求出t的值;若不存在,請說明理由;
(4)通過觀察、畫圖或折紙等方法,猜想是否存在時刻t,使得PD⊥AB?若存在,請估計t的值在括號中的哪個時間段內(nèi)(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,請簡要說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知拋物線y1=x2-2x+c的部分圖象如圖1所示.
(1)求c的取值范圍;
(2)若拋物線經(jīng)過點(0,-1),試確定拋物線y1=x2-2x+c的解析式;
(3)若反比例函數(shù)的圖象經(jīng)過(2)中拋物線上點(1,a),試在圖2所示直角坐標系中,畫出該反比例函數(shù)及(2)中拋物線的圖象,并利用圖象比較y1與y2的大。

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2cm/s的速度向點B移動,同時點Q由點B開始沿BC邊以1cm/s的速度向點C移動.
①移動開始后第t秒時,設(shè)S=PQ2(cm2),試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當S取得最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,平面直角坐標系中,四邊形OABC為矩形,點A,B的坐標分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MP⊥OA,交AC于P,連接NP,已知動點運動了x秒.
(1)P點的坐標為多少(用含x的代數(shù)式表示);
(2)試求△NPC面積S的表達式,并求出面積S的最大值及相應(yīng)的x值;
(3)當x為何值時,△NPC是一個等腰三角形?簡要說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖1,正方形ABCD的頂點A,B的坐標分別為(0,10),(8,4),頂點C,D在第一象限.點P從點A出發(fā),沿正方形按逆時針方向運動,同時,點Q從點E(4,0)出發(fā),沿x軸正方向以相同速度運動.當點P到達點C時,P,Q兩點同時停止運動.設(shè)運動時間為t(s).
(1)求正方形ABCD的邊長;
(2)當點P在AB邊上運動時,△OPQ的面積S(平方單位)與時間t(s)之間的函數(shù)圖象為拋物線的一部分(如圖2所示),求P,Q兩點的運動速度;
(3)求(2)中面積S(平方單位)與時間t(s)的函數(shù)解析式及面積S取最大值時點P的坐標;
(4)若點P,Q保持(2)中的速度不變,則點P沿著AB邊運動時,∠OPQ的大小隨著時間t的增大而增大;沿著BC邊運動時,∠OPQ的大小隨著時間t的增大而減。旤cP沿著這兩邊運動時,能使∠OPQ=90°嗎?若能,直接寫出這樣的點P的個數(shù);若不能,直接寫不能.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,二次函數(shù)y=x2+bx+c的圖象經(jīng)過點M(1,-2)、N(-1,6).
(1)求二次函數(shù)y=x2+bx+c的關(guān)系式;
(2)把Rt△ABC放在坐標系內(nèi),其中∠CAB=90°,點A、B的坐標分別為(1,0),(4,0),BC=5.將△ABC沿x軸向右平移,當點C落在拋物線上時,求△ABC平移的距離.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,P為拋物線y=x2-x+上對稱軸右側(cè)的一點,且點P在x軸上方,過點P作PA垂直x軸于點A,PB垂直y軸于點B,得到矩形PAOB.若AP=1,求矩形PAOB的面積.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(25):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知:拋物線y=-x2+mx+2m2(m>0)與x軸交于A、B兩點,點A在點B的左邊,C是拋物線上一個動點(點C與點A、B不重合),D是OC的中點,連接BD并延長,交AC于點E.
(1)用含m的代數(shù)式表示點A、B的坐標;
(2)求的值;
(3)當C、A兩點到y(tǒng)軸的距離相等,且S△CED=時,求拋物線和直線BE的解析式.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(25):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

圖1是邊長分別為4和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3);
探究:設(shè)△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點C落在C′E′的中點,邊BC交D′E′于點M,邊AC交D′C′于點N,設(shè)∠AC C′=α(30°<α<90°(圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.

查看答案和解析>>

同步練習(xí)冊答案