相關(guān)習(xí)題
 0  146505  146513  146519  146523  146529  146531  146535  146541  146543  146549  146555  146559  146561  146565  146571  146573  146579  146583  146585  146589  146591  146595  146597  146599  146600  146601  146603  146604  146605  146607  146609  146613  146615  146619  146621  146625  146631  146633  146639  146643  146645  146649  146655  146661  146663  146669  146673  146675  146681  146685  146691  146699  366461 

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》常考題集(18):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某公司試銷一種成本為30元/件的新產(chǎn)品,按規(guī)定試銷時(shí)的銷售單價(jià)不低于成本單價(jià),又不高于80元/件,試銷中每天的銷售量y(件)與銷售單價(jià)x(元/件)滿足下表中的函數(shù)關(guān)系.
x(元/件)3540455055
y(件)550500450400350
(1)試求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)公司試銷該產(chǎn)品每天獲得的毛利潤為S(元),求S與x之間的函數(shù)表達(dá)式(毛利潤=銷售總價(jià)-成本總價(jià));
(3)當(dāng)銷售單價(jià)定為多少時(shí),該公司試銷這種產(chǎn)品每天獲得的毛利潤最大?最大毛利潤是多少?此時(shí)每天的銷售量是多少?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(18):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價(jià)40元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價(jià)的辦法,經(jīng)市場調(diào)研,每降價(jià)1元,月銷售量可增加2萬件.
(1)求出月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(2)求出月銷售利潤z(萬元)(利潤=售價(jià)-成本價(jià))與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)請你通過(2)中的函數(shù)關(guān)系式及其大致圖象幫助公司確定產(chǎn)品的銷售單價(jià)范圍,使月銷售利潤不低于480萬元.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》常考題集(18):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,有一座拋物線形拱橋,橋下面在正常水位AB時(shí),寬20m,水位上升3m就達(dá)到警戒線CD,這時(shí)水面寬度為10m.
(1)在如圖的坐標(biāo)系中求拋物線的解析式;
(2)若洪水到來時(shí),水位以每小時(shí)0.2m的速度上升,從警戒線開始,再持續(xù)多少小時(shí)才能到達(dá)拱橋頂?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(18):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時(shí),大孔水面寬度AB=20米,頂點(diǎn)M距水面6米(即MO=6米),小孔頂點(diǎn)N距水面4.5米(即NC=4.5米).當(dāng)水位上漲剛好淹沒小孔時(shí),借助圖中的直角坐標(biāo)系,求此時(shí)大孔的水面寬度EF.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(18):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某公司為一工廠代銷一種建筑材料(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷售量就會(huì)增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費(fèi)用100元.設(shè)每噸材料售價(jià)為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該經(jīng)銷店要獲得最大月利潤,售價(jià)應(yīng)定為每噸多少元?
(4)小靜說:“當(dāng)月利潤最大時(shí),月銷售額也最大.”你認(rèn)為對嗎?請說明理由.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(18):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

杭州休博會(huì)期間,嘉年華游樂場投資150萬元引進(jìn)一項(xiàng)大型游樂設(shè)施.若不計(jì)維修保養(yǎng)費(fèi)用,預(yù)計(jì)開放后每月可創(chuàng)收33萬元.而該游樂設(shè)施開放后,從第1個(gè)月到第x個(gè)月的維修保養(yǎng)費(fèi)用累計(jì)為y(萬元),且y=ax2+bx;若將創(chuàng)收扣除投資和維修保養(yǎng)費(fèi)用稱為游樂場的純收益g(萬元),g也是關(guān)于x的二次函數(shù);
(1)若維修保養(yǎng)費(fèi)用第1個(gè)月為2萬元,第2個(gè)月為4萬元.求y關(guān)于x的解析式;
(2)求純收益g關(guān)于x的解析式;
(3)問設(shè)施開放幾個(gè)月后,游樂場的純收益達(dá)到最大;幾個(gè)月后,能收回投資?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》常考題集(18):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商場購進(jìn)一種單價(jià)為40元的籃球,如果以單價(jià)50元出售,那么每月可售出500個(gè),根據(jù)銷售經(jīng)驗(yàn),售價(jià)每提高1元,銷售量相應(yīng)減少10個(gè);
(1)假設(shè)銷售單價(jià)提高x元,那么銷售每個(gè)籃球所獲得的利潤是______元;這種籃球每月的銷售量是______個(gè);(用含x的代數(shù)式表示)
(2)8000元是否為每月銷售這種籃球的最大利潤?如果是,請說明理由;如果不是,請求出最大利潤,此時(shí)籃球的售價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(18):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某公司年初推出一種高新技術(shù)產(chǎn)品,該產(chǎn)品銷售的累積利潤y(萬元)與銷售時(shí)間x(月)之間的關(guān)系(即前x個(gè)月的利潤總和y與x之間的關(guān)系)為y=x2-2x(x>0).
(1)求出這個(gè)函數(shù)圖象的頂點(diǎn)坐標(biāo)和對稱軸;
(2)請?jiān)谒o坐標(biāo)系中,畫出這個(gè)函數(shù)圖象的簡圖;
(3)根據(jù)函數(shù)圖象,你能否判斷出公司的這種新產(chǎn)品銷售累積利潤是從什么時(shí)間開始盈利的?
(4)這個(gè)公司第6個(gè)月所獲的利潤是多少?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(18):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,用長為18 m的籬笆(虛線部分),兩面靠墻圍成矩形的苗圃.
(1)設(shè)矩形的一邊為x(m),面積為y(m2),求y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),所圍苗圃的面積最大,最大面積是多少?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(18):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在矩形ABCD中,AB=6米,BC=8米,動(dòng)點(diǎn)P以2米/秒的速度從點(diǎn)A出發(fā),沿AC向點(diǎn)C移動(dòng),同時(shí)動(dòng)點(diǎn)Q以1米/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B移動(dòng),設(shè)P、Q兩點(diǎn)移動(dòng)t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時(shí)間t的關(guān)系式;
(2)在P、Q兩點(diǎn)移動(dòng)的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時(shí)點(diǎn)P的位置;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案