相關(guān)習(xí)題
 0  146703  146711  146717  146721  146727  146729  146733  146739  146741  146747  146753  146757  146759  146763  146769  146771  146777  146781  146783  146787  146789  146793  146795  146797  146798  146799  146801  146802  146803  146805  146807  146811  146813  146817  146819  146823  146829  146831  146837  146841  146843  146847  146853  146859  146861  146867  146871  146873  146879  146883  146889  146897  366461 

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(22):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(總利潤=總銷售額-總成本)為P元,求P與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大,最大值是多少?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(22):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

枇杷是莆田名果之一,某果園有100棵枇杷樹.每棵平均產(chǎn)量為40千克,現(xiàn)準(zhǔn)備多種一些枇杷樹以提高產(chǎn)量,但是如果多種樹,那么樹與樹之間的距離和每一棵數(shù)接受的陽光就會(huì)減少,根據(jù)實(shí)踐經(jīng)驗(yàn),每多種一棵樹,投產(chǎn)后果園中所有的枇杷樹平均每棵就會(huì)減少產(chǎn)量0.25千克,問:增種多少棵枇杷樹,投產(chǎn)后可以使果園枇杷的總產(chǎn)量最多?最多總產(chǎn)量是多少千克?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(22):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

隨著綠城南寧近幾年城市建設(shè)的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計(jì)劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預(yù)測,種植樹木的利潤y1與投資量x成正比例關(guān)系,如圖①所示;種植花卉的利潤y2與投資量x成二次函數(shù)關(guān)系,如圖②所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤,他能獲取的最大利潤是多少?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(22):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

青年企業(yè)家劉敏準(zhǔn)備在北川禹里鄉(xiāng)投資修建一個(gè)有30個(gè)房間供旅客住宿的旅游度假村,并將其全部利潤用于災(zāi)后重建.據(jù)測算,若每個(gè)房間的定價(jià)為60元/天,房間將會(huì)住滿;若每個(gè)房間的定價(jià)每增加5元∕天時(shí),就會(huì)有一個(gè)房間空閑.度假村對旅客住宿的房間將支出各種費(fèi)用20元/天•間(沒住宿的不支出).問房價(jià)每天定為多少時(shí),度假村的利潤最大?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(22):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

我市某工藝廠為配合北京奧運(yùn),設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價(jià)-成本總價(jià))
(3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(22):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,把一張長10cm,寬8cm的矩形硬紙板的四周各剪去一個(gè)同樣大小的正方形,再折合成一個(gè)無蓋的長方體盒子(紙板的厚度忽略不計(jì)).
(1)要使長方體盒子的底面積為48cm2,那么剪去的正方形的邊長為多少;
(2)你感到折合而成的長方體盒子的側(cè)面積會(huì)不會(huì)有更大的情況?如果有,請你求出最大值和此時(shí)剪去的正方形的邊長;如果沒有,請你說明理由;
(3)如果把矩形硬紙板的四周分別剪去2個(gè)同樣大小的正方形和2個(gè)同樣形狀、同樣大小的矩形,然后折合成一個(gè)有蓋的長方體盒子,是否有側(cè)面積最大的情況?如果有,請你求出最大值和此時(shí)剪去的正方形的邊長;如果沒有,請你說明理由.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(22):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

我州有一種可食用的野生菌,上市時(shí),外商李經(jīng)理按市場價(jià)格30元/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測,該野生菌的市場價(jià)格將以每天每千克上漲1元;但冷凍存放這批野生菌時(shí)每天需要支出各種費(fèi)用合計(jì)310元,而且這類野生菌在冷庫中最多保存160天,同時(shí),平均每天有3千克的野生菌損壞不能出售.
(1)設(shè)x天后每千克該野生菌的市場價(jià)格為y元,試寫出y與x之間的函數(shù)關(guān)系式.
(2)若存放x天后,將這批野生菌一次性出售,設(shè)這批野生菌的銷售總額為P元,試寫出P與x之間的函數(shù)關(guān)系式.
(3)李經(jīng)理將這批野生茵存放多少天后出售可獲得最大利潤W元?
(利潤=銷售總額-收購成本-各種費(fèi)用)

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(22):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

一家電腦公司推出一款新型電腦,投放市場以來的利潤情況可以看做是拋物線的一部分,請結(jié)合下面的圖象解答以下問題:
(1)求該拋物線對應(yīng)的二次函數(shù)的解析式;
(2)該公司在經(jīng)營此款電腦過程中,第幾個(gè)月的利潤最大,最大利潤是多少;
(3)若照此經(jīng)營下去,請你結(jié)合所學(xué)的知識(shí),對公司在此款電腦的經(jīng)營狀況(是否虧損何時(shí)虧損)作出預(yù)測.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(22):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

一座拱橋的輪廓是拋物線型(如圖1),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2),求拋物線的解析式;
(2)求支柱EF的長度;
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計(jì))?請說明你的理由.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(22):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某人定制了一批地磚,每塊地磚(如圖(1)所示)是邊長為0.4米的正方形ABCD,點(diǎn)E、F分別在邊BC和CD上,△CFE、△ABE和四邊形AEFD均由單一材料制成,制成△CFE、△ABE和四邊形AEFD的三種材料的每平方米價(jià)格依次為30元、20元、10元,若將此種地磚按圖(2)所示的形式鋪設(shè),且能使中間的陰影部分組成四邊形EFGH.
(1)判斷圖(2)中四邊形EFGH是何形狀,并說明理由;
(2)E、F在什么位置時(shí),定制這批地磚所需的材料費(fèi)用最?

查看答案和解析>>

同步練習(xí)冊答案