科目: 來源: 題型:
如圖,拋物線y=x2+mx+n與直線y=﹣x+3交于A,B兩點,交x軸與D,C兩點,連接AC,BC,已知A(0,3),C(3,0).
(Ⅰ)求拋物線的解析式和tan∠BAC的值;
(Ⅱ)在(Ⅰ)條件下:
(1)P為y軸右側(cè)拋物線上一動點,連接PA,過點P作PQ⊥PA交y軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ACB相似?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
(2)設(shè)E為線段AC上一點(不含端點),連接DE,一動點M從點D出發(fā),沿線段DE以每秒一個單位速度運(yùn)動到E點,再沿線段EA以每秒個單位的速度運(yùn)動到A后停止,當(dāng)點E的坐標(biāo)是多少時,點M在整個運(yùn)動中用時最少?
查看答案和解析>>
科目: 來源: 題型:
閱讀資料:
如圖1,在平面之間坐標(biāo)系xOy中,A,B兩點的坐標(biāo)分別為A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B兩點間的距離為AB= .
我們知道,圓可以看成到圓心距離等于半徑的點的集合,如圖2,在平面直角坐標(biāo)系xoy中,A(x,y)為圓上任意一點,則A到原點的距離的平方為OA2=|x﹣0|2+|y﹣0|2,當(dāng)⊙O的半徑為r時,⊙O的方程可寫為:x2+y2=r2.
問題拓展:如果圓心坐標(biāo)為P(a,b),半徑為r,那么⊙P的方程可以寫為。 綜合應(yīng)用:
如圖3,⊙P與x軸相切于原點O,P點坐標(biāo)為(0,6),A是⊙P上一點,連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長PD交x軸于點B,連接AB.
①證明AB是⊙P的切點;
②是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標(biāo),并寫出以Q為圓心,以O(shè)Q為半徑的⊙O的方程;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
如圖,已知,在△ABC中,CA=CB,∠ACB=90°,E,F(xiàn)分別是CA,CB邊的三等分點,將△ECF繞點C逆時針旋轉(zhuǎn)α角(0°<α<90°),得到△MCN,連接AM,BN.
(1)求證:AM=BN;
(2)當(dāng)MA∥CN時,試求旋轉(zhuǎn)角α的余弦值.
查看答案和解析>>
科目: 來源: 題型:
如圖1所示,某乘客乘高速列車從甲地經(jīng)過乙地到丙地,列車勻速行駛,圖2為列車離乙地路程y(千米)與行駛時間x(小時)時間的函數(shù)關(guān)系圖象.
(1)填空:甲、丙兩地距離 900 千米.
(2)求高速列車離乙地的路程y與行駛時間x之間的函數(shù)關(guān)系式,并寫出x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
為進(jìn)一步推廣“陽光體育”大課間活動,某中學(xué)對已開設(shè)的A實心球,B立定跳遠(yuǎn),C跑步,D跳繩四種活動項目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計圖,請結(jié)合圖中的信息解答下列問題:
(1)請計算本次調(diào)查中喜歡“跑步”的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補(bǔ)充完整;
(2)隨機(jī)抽取了5名喜歡“跑步”的學(xué)生,其中有3名女生,2名男生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
查看答案和解析>>
科目: 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(shù)y=(k≠0,x>0)的圖象過點B,E.若AB=2,則k的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com