科目: 來源: 題型:
【題目】已知拋物線,與x軸交于兩點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(Ⅰ)求點(diǎn)A,B和點(diǎn)C的坐標(biāo);
(Ⅱ)已知P是線段上的一個(gè)動(dòng)點(diǎn).
①若軸,交拋物線于點(diǎn)Q,當(dāng)取最大值時(shí),求點(diǎn)P的坐標(biāo);
②求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】將一個(gè)矩形紙片放置在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn)E,F分別在邊,上.沿著折疊該紙片,使得點(diǎn)A落在邊上,對應(yīng)點(diǎn)為,如圖①.再沿折疊,這時(shí)點(diǎn)E恰好與點(diǎn)C重合,如圖②.
(Ⅰ)求點(diǎn)C的坐標(biāo);
(Ⅱ)將該矩形紙片展開,再折疊該矩形紙片,使點(diǎn)O與點(diǎn)F重合,折痕與相交于點(diǎn)P,展開矩形紙片,如圖③.
①求的大小;
②點(diǎn)M,N分別為,上的動(dòng)點(diǎn),當(dāng)取得最小值時(shí),求點(diǎn)N的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目: 來源: 題型:
【題目】某劇院舉行專場音樂會(huì),成人票每張20元,學(xué)生票每張5元. 暑假期間,為了豐富廣大師生的業(yè)余文化生活,影劇院制定了兩種優(yōu)惠方案,方案一:購買一張成人票贈(zèng)送一張學(xué)生票;方案二:按總價(jià)的90%付款. 某校有4名老師帶隊(duì),與若干名(不少于4人)學(xué)生一起聽音樂會(huì).設(shè)學(xué)生人數(shù)為人,(為整數(shù)).
(1)根據(jù)題意填表:
(2)設(shè)方案一付款總金額為元,方案二付款總金額為元,分別求,關(guān)于的函數(shù)解析式;
(3)根據(jù)題意填空:
①若用兩種方案購買音樂會(huì)的花費(fèi)相同,則聽音樂會(huì)的學(xué)生有 人;
②若有60名學(xué)生聽音樂會(huì),則用方案 購買音樂會(huì)票的花費(fèi)少;
③若用一種方案購買音樂會(huì)票共花費(fèi)了元,則用方案 購買音樂會(huì)票,使聽音樂的學(xué)生人數(shù)多.
查看答案和解析>>
科目: 來源: 題型:
【題目】在某中學(xué)開展的“好書伴我成長”讀書活動(dòng)中,為了解八年級(jí)320名學(xué)生讀書情況,隨機(jī)調(diào)查了八年級(jí)部分學(xué)生讀書的冊數(shù). 根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計(jì)圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受調(diào)查的學(xué)生人數(shù)為 ,圖①中的值為 ;
(2)求統(tǒng)計(jì)的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)統(tǒng)計(jì)的樣本數(shù)據(jù),估計(jì)該校讀書超過3冊的學(xué)生人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長為的網(wǎng)格中,△的頂點(diǎn),,均在格點(diǎn)上.
(1)的長等于_____________;
(2)在如圖所示的網(wǎng)格中,將△繞點(diǎn)旋轉(zhuǎn),使得點(diǎn)的對應(yīng)點(diǎn)落在邊上,得到△,請用無刻度的直尺,畫出△,并簡要說明這個(gè)三角形的各個(gè)頂點(diǎn)是如何找到的(不要求證明)__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形紙片的邊長為5,E是邊的中點(diǎn),連接.沿折疊該紙片,使點(diǎn)B落在F點(diǎn).則的長為______________________.
查看答案和解析>>
科目: 來源: 題型:
【題目】二次函數(shù)(,,是常數(shù),)的自變量x與函數(shù)值y的部分對應(yīng)值如下表:
… | -1 | 0 | 1 | 3 | … | |
… | 3 | 3 | … |
且當(dāng)時(shí),與其對應(yīng)的函數(shù)值.有下列結(jié)論:①;②3是關(guān)于的方程的一個(gè)根;③.其中,正確結(jié)論的個(gè)數(shù)是( )
A.0B.1C.2/span>D.3
查看答案和解析>>
科目: 來源: 題型:
【題目】問題提出
(1)如圖①,在等腰Rt△ABC中,斜邊AC=4,點(diǎn)D為AC上一點(diǎn),連接BD,則BD的最小值為 ;
問題探究
(2)如圖②,在△ABC中,AB=AC=5,BC=6,點(diǎn)M是BC上一點(diǎn),且BM=4,點(diǎn)P是邊AB上一動(dòng)點(diǎn),連接PM,將△BPM沿PM翻折得到△DPM,點(diǎn)D與點(diǎn)B對應(yīng),連接AD,求AD的最小值;
問題解決
(3)如圖③,四邊形ABCD是規(guī)劃中的休閑廣場示意圖,其中∠BAD=∠ADC=135°,∠DCB=30°,AD=2km,AB=3km,點(diǎn)M是BC上一點(diǎn),MC=4km.現(xiàn)計(jì)劃在四邊形ABCD內(nèi)選取一點(diǎn)P,把△DCP建成商業(yè)活動(dòng)區(qū),其余部分建成景觀綠化區(qū).為方便進(jìn)入商業(yè)區(qū),需修建小路BP、MP,從實(shí)用和美觀的角度,要求滿足∠PMB=∠ABP,且景觀綠化區(qū)面積足夠大,即△DCP區(qū)域面積盡可能。畡t在四邊形ABCD內(nèi)是否存在這樣的點(diǎn)P?若存在,請求出△DCP面積的最小值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,曲線是拋物線的一部分,與軸交于兩點(diǎn),與軸交于點(diǎn),且表達(dá)式,曲線與曲線關(guān)于直線對稱.
(1)求三點(diǎn)的坐標(biāo)和曲線的表達(dá)式;
(2)過點(diǎn)作軸交曲線于點(diǎn),連結(jié),在曲線.上有一點(diǎn),使得四邊形為箏形(如果一個(gè)四邊形的一條對角線被另一條對角線垂直平分,這樣的四邊形為箏形),請求出點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,為的直徑,為弦的中點(diǎn),連接并延長與交于點(diǎn),過點(diǎn)作的切線,交的延長線于點(diǎn).
(1)求證:;
(2)連接,若,請求出四邊形的面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com