科目: 來源: 題型:
【題目】如圖,正方形ABCD中,AB=2,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到線段CE,線段BD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BF,連接EF,則圖中陰影部分的面積是_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=2,AC=3,D為BC的中點(diǎn),動點(diǎn)E,F分別在AB,AC上,分別過點(diǎn)EG∥AD∥FH,交BC于點(diǎn)G、H,若EF∥BC,則EF+EG+FH的值為( 。
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,按以下步驟作圖:①以點(diǎn)A為圓心,以小于AC的長為半徑作弧,分別交AC,AB于點(diǎn)M,N;②分別以點(diǎn)M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點(diǎn)O;③連接AP,交BC于點(diǎn)E.若CE=3,BE=5,則AC的長為( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B(3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線上有一個(gè)動點(diǎn)P,當(dāng)點(diǎn)P在該拋物線上滑動到什么位置時(shí),滿足S△PAB=10,并求出此時(shí)P點(diǎn)的坐標(biāo);
(3)設(shè)(1)中的拋物線交y軸交于C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使△QAC的周長最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,,,三點(diǎn)在上,直徑平分,過點(diǎn)作交弦于點(diǎn),在的延長線上取一點(diǎn),使得.
(1)求證:是的切線;
(2)連接AF交DE于點(diǎn)M,若AD=4,DE=5,求DM的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】春節(jié)期間,某商場計(jì)劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品3件共需270元;購進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)就“戲曲進(jìn)校園”活動的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對收集的信息進(jìn)行了統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:(圖中表示“很喜歡”,表示“喜歡”,表示“一般”,表示“不喜歡”)
(1)被調(diào)查的總?cè)藬?shù)是_________,扇形統(tǒng)計(jì)圖中部分所對應(yīng)的扇形圓心角的度數(shù)為_________;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在抽取的類5人中,剛好有甲、乙、丙3個(gè)女生和丁、戊2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用畫樹狀圖或列表法求出抽到的兩個(gè)學(xué)生性別不相同的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形中,小聰同學(xué)利用直尺和圓規(guī)完成了如下操作:
①分別以點(diǎn)和為圓心,以大于的長為半徑作弧,兩弧相交于點(diǎn)和;
②作直線,交于點(diǎn).
請你觀察圖形解答下列問題:
(1)與的位置關(guān)系:
直線是線段的____________線;
(2)若,,求矩形的對角線的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),,,…和,,,…分別在直線和軸上.,,,…都是等腰直角三角形,它們的面積分別記作,,,…,如果點(diǎn)的坐標(biāo)為,那么的縱坐標(biāo)為_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(-1,0)、點(diǎn)B(3,0)、點(diǎn)C(4,y1),若點(diǎn)D(x2,y2)是拋物線上任意一點(diǎn),有下列結(jié)論:①二次函數(shù)y=ax2+bx+c的最小值為-4a;②若-1≤x2≤4,則0≤y2≤5a;③若y2>y1,則x2>4;④一元二次方程cx2+bx+a=0的兩個(gè)根為-1和.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com