科目: 來源: 題型:
【題目】已知如圖,△ABC中AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B、M兩點的⊙O交BC于G,交AB于點F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當BC=6,cosC=,求⊙O的直徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】小明家飲水機中原有水的溫度為20℃,通電開機后,飲水機自動開始加熱[此過程中水溫y(℃)與開機時間x(分)滿足一次函數(shù)關系],當加熱到100℃時自動停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機時間x(分)成反比例關系],當水溫降至20℃時,飲水機又自動開始加熱…,重復上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:
(1)當0≤x≤8時,求水溫y(℃)與開機時間x(分)的函數(shù)關系式;
(2)求圖中t的值;
(3)若小明在通電開機后即外出散步,請你預測小明散步45分鐘回到家時,飲水機內的溫度約為多少℃?
查看答案和解析>>
科目: 來源: 題型:
【題目】某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調查了本校某班的學生,并根據(jù)調查結果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
(1)在這次調查中,喜歡籃球項目的同學有 人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為 %,如果學校有800名學生,估計全校學生中有 人喜歡籃球項目.
(2)請將條形統(tǒng)計圖補充完整.
(3)在被調查的學生中,喜歡籃球的有2名女同學,其余為男同學.現(xiàn)要從中隨機抽取2名同學代表班級參加;@球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿折線BE-ED-DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、點Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(),已知y與t之間的函數(shù)圖象如圖2所示.
給出下列結論:①當0<t≤10時,△BPQ是等腰三角形;②=48;③當14<t<22時,y=110-5t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤△BPQ與△ABE相似時,t=14.5.
其中正確結論的序號是_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯(lián)結FC,當△EFC是直角三角形時,那么BE的長為____________.
查看答案和解析>>
科目: 來源: 題型:
【題目】海靜中學開展以“我最喜愛的職業(yè)”為主題的調查活動,圍繞“在演員、教師、醫(yī)生、律師、公務員共五類職業(yè)中,你最喜愛哪一類?(必選且只選一類)”的問題,在全校范圍內隨機抽取部分學生進行問卷調查,將調查結果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息回答下列問題:
(1)本次調查共抽取了多少名學生?
(2)求在被調查的學生中,最喜愛教師職業(yè)的人數(shù),并補全條形統(tǒng)計圖;
(3)若海靜中學共有1500名學生,請你估計該中學最喜愛律師職業(yè)的學生有多少名?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點,直線MN經(jīng)過點C,過點A作直線MN的垂線,垂足為點D,且∠BAC=∠CAD.
(1)求證:直線MN是⊙O的切線;
(2)若CD=3,∠CAD=30°,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】學校準備購進一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;
(2)學校準備購進這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在數(shù)學興趣小組的活動中,小明進行數(shù)學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,AD與AE在同一直線上,AB與AG在同一直線上.
⑴小明發(fā)現(xiàn)DG⊥BE,請你幫他說明理由.
⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時BE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com