科目: 來源: 題型:
【題目】如圖,由正比例函數(shù)沿軸的正方向平移4個(gè)單位而成的一次函數(shù)
的圖像與反比例函數(shù)()在第一象限的圖像交于A(1,n)和B兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ABO的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在ABCD中,AB=3,BC=5,以點(diǎn)B的圓心,以任意長為半徑作弧,分別交BA、BC于點(diǎn)P、Q,再分別以P、Q為圓心,以大于PQ的長為半徑作弧,兩弧在∠ABC內(nèi)交于點(diǎn)M,連接BM并延長交AD于點(diǎn)E,則DE的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,E、F分別為正方形ABCD的邊AB、AD上的點(diǎn),且AE=AF,聯(lián)接EF,將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,使E落在E,F落在F,聯(lián)接BE并延長交DF于點(diǎn)G,如果AB=,AE=1,則DG=______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,
(1)求證:CF=2AF;
(2)求tan∠CFD的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知直線與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,拋物線
與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)M是上述拋物線上一點(diǎn),如果△ABM和△ABC相似,求點(diǎn)M的坐標(biāo);
(3)連接AC,求頂點(diǎn)D、E、F、G在△ABC各邊上的矩形DEFC面積最大時(shí),寫出該矩形在AB邊上的頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ACB為直角,AB=10,°,半徑為1的動(dòng)圓Q的圓心從點(diǎn)C出發(fā),沿著CB方向以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿著BA方向也以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5)以P為圓心,PB長為半徑的⊙P與AB、BC的另一個(gè)交點(diǎn)分別為E、D,連結(jié)ED、EQ.
(1)判斷并證明ED與BC的位置關(guān)系,并求當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí)t的值;
(2)當(dāng)⊙P和AC相交時(shí),設(shè)CQ為,⊙P被AC 截得的弦長為,求關(guān)于的函數(shù); 并求當(dāng)⊙Q過點(diǎn)B時(shí)⊙P被AC截得的弦長;
(3)若⊙P與⊙Q相交,寫出t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣x+4與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C.
(1)求點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)P為第二象限拋物線上的一個(gè)動(dòng)點(diǎn),求△ACP面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,點(diǎn)P為線段BE延長線上一點(diǎn),連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點(diǎn)F.
(1)求證:;
(2)連接BD,請你判斷AC與BD有什么位置關(guān)系?并說明理由;
(3)若PE=1,求△PBD的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個(gè)交點(diǎn).
(1)若a=1,求反比例函數(shù)的解析式及b的值;
(2)在(1)的條件下,根據(jù)圖象直接回答:當(dāng)x取何值時(shí),反比例函數(shù)大于一次函數(shù)的值?
(3)若a﹣b=4,求一次函數(shù)的函數(shù)解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的傾斜角∠BAH=30°,AB=20米,AB=30米.
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com