科目: 來源: 題型:
【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,對稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點(diǎn),則下列結(jié)論:
①abc>0
②a﹣b+c<0;
③2a+b+c>0;
④x(ax+b)≤a+b;
其中正確的有_____
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長線上的動點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由△DAM平移得到.若過點(diǎn)E作EH⊥AC,H為垂足,則有以下結(jié)論:
①點(diǎn)M位置變化,使得∠DHC=60°時,2BE=DM;
②無論點(diǎn)M運(yùn)動到何處,都有DM=HM;
③無論點(diǎn)M運(yùn)動到何處,∠CHM一定大于135°.其中正確結(jié)論的序號為( )
A.①③B.①②C.②③D.①②③
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=12,點(diǎn)E為BC的中點(diǎn),以CD為直徑作半圓CFD,點(diǎn)F為半圓的中點(diǎn),連接AF,EF,圖中陰影部分的面積是( )
A. 18+36π B. 24+18π C. 18+18π D. 12+18π
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A點(diǎn)為直線y=x上一點(diǎn),過A點(diǎn)作AB⊥x軸于B點(diǎn),若OB=4,E是OB邊上的一點(diǎn),且OE=3,點(diǎn)P為線段AO上的動點(diǎn),則△BEP周長的最小值為( )
A.4+2B.4+C.6D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在矩形ABCD中,P為CD邊上一點(diǎn)(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD′P,PD′的延長線交邊AB于點(diǎn)M,過點(diǎn)B作BN∥MP交DC于點(diǎn)N.
(1)求證:AD2=DPPC;
(2)請判斷四邊形PMBN的形狀,并說明理由;
(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F(xiàn).若=,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點(diǎn),∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=﹣x2+5x+n經(jīng)過點(diǎn)A(1,0),與y軸交于點(diǎn)B.
(1)求拋物線的解析式;
(2)P是y軸正半軸上一點(diǎn),且△PAB是以AB為腰的等腰三角形,試求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】一只不透明袋子中裝有三只大小、質(zhì)地都相同的小球,球面上分別標(biāo)有數(shù)字1、﹣2、3,攪勻后先從中任意摸出一個小球(不放回),記下數(shù)字作為點(diǎn)A的橫坐標(biāo),再從余下的兩個小球中任意摸出一個小球,記下數(shù)字作為點(diǎn)A的縱坐標(biāo).
(1)用畫樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;
(2)求點(diǎn)A落在第四象限的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】黨的十九大提出,建設(shè)生態(tài)文明是中華民族永續(xù)發(fā)展的千年大計,某同學(xué)參加“加強(qiáng)生態(tài)環(huán)境保護(hù),建設(shè)美麗中國”手工大賽,他用一種環(huán)保材料制作A、B兩種手工藝品,制作1件A種手工藝品和3件B種手工藝品需要環(huán)保材料5米,制作4件A種手工藝品和5件B種手工藝品需要環(huán)保材料13米,求制作一件A種手工藝品和1件B種手工藝品各需多少米環(huán)保材料?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com