科目: 來源: 題型:
【題目】如圖,△ABC中,∠ABC=90°
(1)在BC邊上找一點(diǎn)P,作⊙P與AC,AB邊都相切,與AC的切點(diǎn)為Q;(尺規(guī)作圖,保留作圖痕跡)
(2)若AB=4,AC=6,求第(1)題中所作圓的半徑;
(3)連接BQ,第(2)題中的條件不變,求cos∠CBQ的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)O在ABCD的AD邊上,⊙O經(jīng)過A、B、C三點(diǎn),點(diǎn)E在⊙O外,且OE⊥BC,垂足為F.
(1)若EC是⊙O的切線,∠A=65°,求∠ECB的度數(shù);
(2)若OF=4,OD=1,求AB的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0.
(1)當(dāng)方程有一個根為﹣1時,求k的值及另一個根;
(2)當(dāng)方程有兩個不相等的實(shí)數(shù)根,求k的取值范圍;
(3)若方程兩實(shí)根x1、x2滿足x1+x2=x1x2,求k的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1)是一款手機(jī)支架,忽略支管的粗細(xì),得到它的簡化結(jié)構(gòu)圖如圖(2)所示.已知支架底部支架CD平行于水平面,EF⊥OE,GF⊥EF,支架可繞點(diǎn)O旋轉(zhuǎn),OE=20cm,EF=20cm.如圖(3)若將支架上部繞O點(diǎn)逆時針旋轉(zhuǎn),當(dāng)點(diǎn)G落在直線CD上時,測量得∠EOG=65°.
(1)求FG的長度(結(jié)果精確到0.1);
(2)將支架由圖(3)轉(zhuǎn)到圖(4)的位置,若此時F、O兩點(diǎn)所在的直線恰好于CD垂直,點(diǎn)F的運(yùn)動路線的長度稱為點(diǎn)F的路徑長,求點(diǎn)F的路徑長.
(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,1.73)
查看答案和解析>>
科目: 來源: 題型:
【題目】嘉淇同學(xué)利用業(yè)余時間進(jìn)行射擊訓(xùn)練,一共射擊7次,經(jīng)過統(tǒng)計,制成如圖12所示的折線統(tǒng)計圖.
(1)這組成績的眾數(shù)是 ;
(2)求這組成績的方差;
(3)若嘉淇再射擊一次(成績?yōu)檎麛?shù)環(huán)),得到這8次射擊成績的中位數(shù)恰好就是原來7次成績的中位數(shù),求第8次的射擊成績的最大環(huán)數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,M,N是以AB為直徑的⊙O上的點(diǎn),且=,弦MN交AB于點(diǎn)C,BM平分∠ABD,MF⊥BD于點(diǎn)F.
(1)求證:MF是⊙O的切線;
(2)若CN=3,BN=4,求CM的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1) (2)2x2+3x—1=0(用配方法解)
(3) (4)(x+1)(x+8)=-2
(5) (6)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線與x軸交于A(﹣4,0)、B(2,0)兩點(diǎn),與y軸交于C,M為此拋物線的頂點(diǎn).
(1)求此拋物線的函數(shù)解析式;
(2)動直線l從與直線AC重合的位置出發(fā),繞點(diǎn)A順時針旋轉(zhuǎn),與直線AB重合時終止運(yùn)動,直線l與BC交于點(diǎn)D,P是線段AD的中點(diǎn).
①直接寫出點(diǎn)P所經(jīng)過的路線長為 ;
②點(diǎn)D與B、C不重合時,過點(diǎn)D作DE⊥AC于點(diǎn)E,作DF⊥AB于點(diǎn)F,連接PE、PF、EF,在旋轉(zhuǎn)過程中,求EF的最小值;
(3)將拋物線C1平移得到拋物線C2,已知拋物線C2的頂點(diǎn)為N,與直線AC交于E、F兩點(diǎn),若EF=AC,求直線MN的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知:拋物線y=a(x+1)(x﹣3)與x軸相交于A、B兩點(diǎn),與y軸的交于點(diǎn)C(0,﹣3).
(1)求拋物線的解析式的一般式.
(2)若拋物線上有一點(diǎn)P,滿足∠ACO=∠PCB,求P點(diǎn)坐標(biāo).
(3)直線l:y=kx﹣k+2與拋物線交于E、F兩點(diǎn),當(dāng)點(diǎn)B到直線l的距離最大時,求△BEF的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一堂數(shù)學(xué)實(shí)踐課上,趙老師給出了下列問題:
(提出問題)
(1)如圖1,在△ABC中,E是BC的中點(diǎn),P是AE的中點(diǎn),就稱CP是△ABC的“雙中線”,∠ACB=90°,AC=3,AB=5.則CP= .
(探究規(guī)律)
(2)在圖2中,E是正方形ABCD一邊上的中點(diǎn),P是BE上的中點(diǎn),則稱AP是正方形ABCD的“雙中線”,若AB=4.則AP的長為 (按圖示輔助線求解);
(3)在圖3中,AP是矩形ABCD的“雙中線”,若AB=4,BC=6,請仿照(2)中的方法求出AP的長,并說明理由;
(拓展應(yīng)用)
(4)在圖4中,AP是平行四邊形ABCD的“雙中線”,若AB=4,BC=10,∠BAD=120°.求出△ABP的周長,并說明理由?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com