科目: 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】水果店進口一種高檔水果,賣出每斤水果盈利(毛利潤)5元,每天可賣出1000斤,經(jīng)市場調(diào)査后發(fā)現(xiàn),在進價不變的情況下,若每斤售價漲0.5元,每天銷量將減少40斤.
(1)若以每斤盈利9元的價錢出售,問每天能盈利多少元?
(2)若水果店要保證每天銷售這種水果的毛利潤為6000元,同時又要使顧客覺得價不太貴,則每斤水果應漲價多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】在一個不透明的盒子里,裝有5個分別標有數(shù)字1,2,3,4,5的小球,它們的形狀、大小、質(zhì)地等完全相同.雄威同學先從盒子里隨機取出第一個小球,記下數(shù)字為x;不放回盒子,再由麗賢同學隨機取出第二個小球,記下數(shù)字為y.
(1)請用樹狀圖或列表法表示出坐標(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求雄威同學、麗賢同學各取一個小球所確定的點(x,y)落在反比例函數(shù)y=的圖象上的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠A=65°,BC=6,以BC為直徑的半圓O與AB、AC分別交于點D、E,則圖中由O、D、E三點所圍成的扇形面積等于_____.(結(jié)果保留π)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于點D,DE恰好是AB的垂直平分線,垂足為E.若BC=6,則AB的長為( 。
A.3B.4C.8D.10
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側(cè),B點的坐標為(3,0),與y軸交于C(0,﹣3)點,點P是直線BC下方的拋物線上一動點.
(1)求這個二次函數(shù)的表達式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD·AB;
(3)若⊙O的半徑為2,∠ACD=300,求圖中陰影部分的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,AB∥OC,∠AOC=90°,∠BCO=45°,BC=,點C的坐標為(-18,0).
(1)求點B的坐標;
(2)若直線DE交梯形對角線BO于點D,交y軸于點E,且OE=4,OD=2BD,求直線DE的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載.某中學數(shù)學活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側(cè)取點A、B,使∠CAD=300,∠CBD=600.
(1)求AB的長(精確到0.1米,參考數(shù)據(jù):);
(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】 “六一”前夕質(zhì)監(jiān)部門從某超市經(jīng)銷的兒童玩具、童車和童裝中共抽查了300件兒童用品,以下是根據(jù)抽查結(jié)果繪制出的不完整的統(tǒng)計表和扇形圖;
類別 | 兒童玩具 | 童車 | 童裝 |
抽查件數(shù) | 90 |
請根據(jù)上述統(tǒng)計表和扇形提供的信息,完成下列問題:
(1)分別補全上述統(tǒng)計表和統(tǒng)計圖;
(2)已知所抽查的兒童玩具、童車、童裝的合格率分別為90%、88%、80%,若從該超市的這三類兒童用品中隨機購買一件,買到合格品的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com