科目: 來源: 題型:
【題目】已知:拋物線y=2ax2﹣ax﹣3(a+1)與x軸交于點AB(點A在點B的左側).
(1)不論a取何值,拋物線總經過第三象限內的一個定點C,請直接寫出點C的坐標;
(2)如圖,當AC⊥BC時,求a的值和AB的長;
(3)在(2)的條件下,若點P為拋物線在第四象限內的一個動點,點P的橫坐標為h,過點P作PH⊥x軸于點H,交BC于點D,作PE∥AC交BC于點E,設△ADE的面積為S,請求出S與h的函數關系式,并求出S取得最大值時點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個三角形為“勻稱三角形”,這條中線為“勻稱中線”.
(1)如圖①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“勻稱三角形”.
①請判斷“勻稱中線”是哪條邊上的中線,
②求BC:AC:AB的值.
(2)如圖②,△ABC是⊙O的內接三角形,AB>AC,∠BAC=45°,S△ABC=2,將△ABC繞點A逆時針旋轉45°得到△ADE,點B的對應點為D,AD與⊙O交于點M,若△ACD是“勻稱三角形”,求CD的長,并判斷CM是否為△ACD的“勻稱中線”.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)利用尺規(guī)作圖,在BC邊上求作一點P,使得點P到邊AB的距離等于PC的長;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)
(2)在(1)的條件下,以點P為圓心,PC長為半徑的⊙P中,⊙P與邊BC相交于點D,若AC=6,PC=3,求BD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列材料,關于x的方程:x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣;x+=c+的解是x1=c,x2=;x+=c+的解是x1=c,x2=;……
(1)請觀察上述方程與解的特征,比較關于x的方程x+=c+(a≠0)與它們的關系猜想它的解是什么,并利用“方程的解”的概念進行驗證.
(2)可以直接利用(1)的結論,解關于x的方程:x+=a+.
查看答案和解析>>
科目: 來源: 題型:
【題目】在“書香校園”活動中,某校為了解學生家庭藏書情況,隨機抽取本校部分學生進行調查,并繪制成部分統計圖表如下:
類別 | 家庭藏書m本 | 學生人數 |
A | 0≤m≤25 | 20 |
B | 26≤m≤50 | a |
C | 51≤m≤75 | 50 |
D | m≥76 | 66 |
根據以上信息,解答下列問題:
(1)該調查的樣本容量為 ,a= ;
(2)隨機抽取一位學生進行調查,剛好抽到A類學生的概率是 ;
(3)若該校有2000名學生,請估計全校學生中家庭藏書不少于76本的人數.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD的邊AB在x軸正半軸上,點A與原點重合,點D的坐標是 (3,4),反比例函數y=(k≠0)經過點C,則k的值為( )
A.12B.15C.20D.32
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①是由五個完全相同的小正方體組成的立體圖形,將圖①中的一個小正方體改變位置后如圖②.則三視圖發(fā)生改變的是( )
A.主視圖B.俯視圖
C.左視圖D.主視圖、俯視圖和左視圖
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,邊長為3正方形的頂點與原點重合,點在軸,軸上。反比例函數的圖象交于點,連接,.
(1)求反比例函數的解析式;
(2)過點作軸的平行線,點在直線上運動,點在軸上運動.
①若是以為直角頂點的等腰直角三角形,求的面積;
②將“①”中的“以為直角頂點的”去掉,將問題改為“若是等腰直角三角形”,的面積除了“①”中求得的結果外,還可以是______.(直接寫答案,不用寫步驟)
查看答案和解析>>
科目: 來源: 題型:
【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又余下一個四邊形,稱為第二次操作;……依次類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準菱形,如圖1,平行四邊形中,若,則平行四邊形為1階準菱形.
(1)判斷與推理:
① 鄰邊長分別為2和3的平行四邊形是__________階準菱形;
② 小明為了剪去一個菱形,進行如下操作:如圖2,把平行四邊形沿著折疊(點在上)使點落在邊上的點,得到四邊形,請證明四邊形是菱形.
(2)操作、探究與計算:
① 已知平行四邊形的鄰邊分別為1,裁剪線的示意圖,并在圖形下方寫出的值;
② 已知平行四邊形的鄰邊長分別為,滿足,請寫出平行四邊形是幾階準菱形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com