科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣2mx+m2﹣1與y軸交于點(diǎn)C.
(1)試用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);
(2)將拋物線y=x2﹣2mx+m2﹣1沿直線y=﹣1翻折,得到的新拋物線與y軸交于點(diǎn)D,若m>0,CD=8,求m的值.
(3)已知A(﹣k+4,1),B(1,k﹣2),在(2)的條件下,當(dāng)線段AB與拋物線y=x2﹣2mx+m2﹣1只有一個(gè)公共點(diǎn)時(shí),請求出k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】丁老師為了解所任教的兩個(gè)班的學(xué)生數(shù)學(xué)學(xué)習(xí)情況,對數(shù)學(xué)進(jìn)行了一次測試,獲得了兩個(gè)班的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行整理、描述和分析,下面給出了部分信息.
①A、B兩班學(xué)生(兩個(gè)班的人數(shù)相同)數(shù)學(xué)成績不完整的頻數(shù)分布直方圖如下(數(shù)據(jù)分成5組:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
②A、B兩班學(xué)生測試成績在80≤x<90這一組的數(shù)據(jù)如下:
A班:80 80 82 83 85 85 86 87 87 87 88 89 89
B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B兩班學(xué)生測試成績的平均數(shù)、中位數(shù)、方差如下:
平均數(shù) | 中位數(shù) | 方差 | |
A班 | 80.6 | m | 96.9 |
B班 | 80.8 | n | 153.3 |
根據(jù)以上信息,回答下列問題:
(1)補(bǔ)全數(shù)學(xué)成績頻數(shù)分布直方圖;
(2)寫出表中m、n的值;
(3)請你對比分析A、B兩班學(xué)生的數(shù)學(xué)學(xué)習(xí)情況(至少從兩個(gè)不同的角度分析).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC,AB=6cm,E是線段AB上一動點(diǎn),D是BC的中點(diǎn),過點(diǎn)C作射線CG,使CG∥AB,連接ED,并延長ED交CG于點(diǎn)F,連接AF.設(shè)A,E兩點(diǎn)間的距離為xcm,A,F兩點(diǎn)間的距離為y1cm,E,F兩點(diǎn)間的距離為y2cm.小麗根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小麗的探究過程,請補(bǔ)充完整:
(1)按照表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y1,y2與x的幾組對應(yīng)值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 9.49 | 8.54 | 7.62 | 6.71 | 5.83 | 5.00 | 4.24 |
y2/cm | 9.49 | 7.62 | 5.83 | 3.16 | 3.16 | 4.24 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(x,y1),(x,y2),并畫出函數(shù)y1,y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)△AEF為等腰三角形時(shí),AE的長度約為 cm.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑的⊙O交AB于點(diǎn)D,點(diǎn)Q為CA延長線上一點(diǎn),延長QD交BC于點(diǎn)P,連接OD,∠ADQ=∠DOQ.
(1)求證:PD是⊙O的切線;
(2)若AQ=AC,AD=4時(shí),求BP的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+1與函數(shù)y的圖象交于A(﹣2,a),B兩點(diǎn).
(1)求a,k的值;
(2)已知點(diǎn)P(0,m),過點(diǎn)P作平行于x軸的直線l,交函數(shù)y的圖象于點(diǎn)C(x1,y1),交直線y=﹣x+1的圖象于點(diǎn)D(x2,y2),若|x1|>|x2|,結(jié)合函數(shù)圖象,直接寫出m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD 中,對角線AC,BD交于點(diǎn)O,以 AD,OD為鄰邊作平行四邊形ADOE,連接BE.
(1) 求證:四邊形AOBE是菱形;
(2) 若∠EAO+∠DCO=180°,DC=2,求四邊形ADOE的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】下面是小星同學(xué)設(shè)計(jì)的“過直線外一點(diǎn)作已知直線的平行線”的尺規(guī)作圖過程:
已知:如圖,直線l和直線l外一點(diǎn)A
求作:直線AP,使得AP∥l
作法:如圖
①在直線l上任取一點(diǎn)B(AB與l不垂直),以點(diǎn)A為圓心,AB為半徑作圓,與直線l交于點(diǎn)C.
②連接AC,AB,延長BA到點(diǎn)D;
③作∠DAC的平分線AP.
所以直線AP就是所求作的直線
根據(jù)小星同學(xué)設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡)
(2)完成下面的證明
證明:∵AB=AC,
∴∠ABC=∠ACB (填推理的依據(jù))
∵∠DAC是△ABC的外角,
∴∠DAC=∠ABC+∠ACB (填推理的依據(jù))
∴∠DAC=2∠ABC
∵AP平分∠DAC,
∴∠DAC=2∠DAP
∴∠DAP=∠ABC
∴AP∥l (填推理的依據(jù))
查看答案和解析>>
科目: 來源: 題型:
【題目】某單位現(xiàn)要組織其市場和生產(chǎn)部的員工游覽該公園,門票價(jià)格如下:
購票人數(shù) | 1~50 | 51~100 | 100以上 |
門票價(jià)格 | 13元/人 | 11元/人 | 9元/人 |
如果按部門作為團(tuán)體,選擇兩個(gè)不同的時(shí)間分別購票游覽公園,則共需支付門票費(fèi)為1245元;如果兩個(gè)部門合在一起作為一個(gè)團(tuán)體,同一時(shí)間購票游覽公園,則需支付門票費(fèi)為945元.那么該公司這兩個(gè)部的人數(shù)之差的絕對值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】某水果公司新購進(jìn)10000千克柑橘,每千克柑橘的成本為9元. 柑橘在運(yùn)輸、存儲過程中會有損壞,銷售人員從所有的柑橘中隨機(jī)抽取若干柑橘,進(jìn)行“柑橘損壞率”統(tǒng)計(jì),并把獲得的數(shù)據(jù)記錄如下:
柑橘總重量n/千克 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
損壞柑橘重量m/千克 | 5.50 | 10.50 | 15.15 | 19.42 | 24.25 | 30.93 | 35.32 | 39.24 | 44.57 | 51.54 |
柑橘損壞的頻率 | 0.110 | 0.105 | 0.101 | 0.097 | 0.097 | 0.103 | 0.101 | 0.098 | 0.099 | 0.103 |
根據(jù)以上數(shù)據(jù),估計(jì)柑橘損壞的概率為 (結(jié)果保留小數(shù)點(diǎn)后一位);由此可知,去掉損壞的柑橘后,水果公司為了不虧本,完好柑橘每千克的售價(jià)至少為________元.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了鍛煉學(xué)生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖所示,點(diǎn)為矩形邊的中點(diǎn),在矩形的四個(gè)頂點(diǎn)處都有定位儀,可監(jiān)測運(yùn)動員的越野進(jìn)程,其中一位運(yùn)動員從點(diǎn)出發(fā),沿著的路線勻速行進(jìn),到達(dá)點(diǎn).設(shè)運(yùn)動員的運(yùn)動時(shí)間為,到監(jiān)測點(diǎn)的距離為.現(xiàn)有與的函數(shù)關(guān)系的圖象大致如圖所示,則這一信息的來源是( ).
A. 監(jiān)測點(diǎn) B. 監(jiān)測點(diǎn) C. 監(jiān)測點(diǎn) D. 監(jiān)測點(diǎn)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com