科目: 來源: 題型:
【題目】如圖,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于點G,連接AF,給出下列結(jié)論:①AE⊥BF; ②AE=BF; ③BG=GE; ④S四邊形CEGF=S△ABG,其中正確的個數(shù)為( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,以圓O為圓心,半徑為1的弧交坐標軸于A,B兩點,P是弧上一點(不與A,B重合),連接OP,設∠POB=α,則點P的坐標是
A. (sinα,sinα) B. (cosα,cosα) C. (cosα,sinα) D. (sinα,cosα)
查看答案和解析>>
科目: 來源: 題型:
【題目】(2016青海省西寧市)如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰直角△ABC,使∠BAC=90°,設點B的橫坐標為x,點C的縱坐標為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( 。
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】(2011山東濟南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.
(1)求拋物線的函數(shù)表達式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達式,并求出m為何值時,S取得最大值;
②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)圖象的一個交點為M(﹣2,m).
(1)求反比例函數(shù)的解析式;
(2)當y2>y1時,求x的取值范圍;
(3)求點B到直線OM的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:
①abc>0;
②b2﹣4ac>0;
③9a﹣3b+c=0;
④若點(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;
⑤5a﹣2b+c<0.
其中正確的個數(shù)有( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:規(guī)定max(a,b)=,例如:max(﹣1,2)=2,max(3,3)=3.
感知:已知函數(shù)y=max(x+1,﹣2x+4)
(1)當x=3時,y=_____;
(2)當y=3時,x=______;
(3)當y隨x的增大而增大時,x的取值范圍為______;
(4)當﹣1≤x≤4時,y的取值范圍為______;
探究:已知函數(shù)y=max(x+2,)當直線y=m(m為常數(shù))與函數(shù)y=max(x+2,)(﹣6<x≤3)的圖象有兩個公共點時,m的取值范圍為_______;
拓展:已知函數(shù)y=max(﹣x2+2nx,﹣nx)(n為常數(shù)且n≠0),當n﹣3≤x≤2時,隨著x的增大,函數(shù)值y先減小后增大,直接寫出n的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D為AB邊上一點,且AD=1,點P從點C出發(fā),沿射線CA以每秒1個單位長度的速度運動,以CP、DP為鄰邊作CPDE.設CPDE和△ABC重疊部分圖形的面積為S(平方單位),點P的運動時間為t(秒)(t>0)
(1)連結(jié)CD,求CD的長;
(2)當CPDE為菱形時,求t的值;
(3)求S與t之間的函數(shù)關(guān)系式;
(4)將線段CD沿直線CE翻折得到線段C′D′.當點D′落在△ABC的邊上時,直接寫出t的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】探究:如圖①,點A在直線MN上,點B在直線MN外,連結(jié)AB,過線段AB的中點P作PC∥MN,交∠MAB的平分線AD于點C,連結(jié)BC,求證:BC⊥AD.
應用:如圖②,點B在∠MAN內(nèi)部,連結(jié)AB,過線段AB的中點P作PC∥AM,交∠MAB的平分線AD于點C;作PE∥AN,交∠NAB的平分線AF于點E,連結(jié)BC、BE.若∠MAN=150°,則∠CBE的大小為______度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com