科目: 來源: 題型:
【題目】如圖,已知,⊙O的半徑OC垂直于弦AB,垂足為點D,點P在OC的延長線上,連結(jié)AP,AC平分∠PAB.
(1)求證:PA是⊙O的切線;
(2)若sinP=,AB=16,求⊙O的半徑長.
查看答案和解析>>
科目: 來源: 題型:
【題目】居民區(qū)內(nèi)的“廣場舞”引起媒體關(guān)注,小王想要了解本小區(qū)居民對“廣場舞”的看法,于是進行了-次抽樣調(diào)查,把居民對“廣場舞”的看法分為四類:
A.非常贊同; B.贊同但要有時間限制; C.無所謂; D.不贊同.
并將調(diào)查結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)①本次被抽查的居民人數(shù)是________人;將條形統(tǒng)計圖補充完整
②圖l中∠α的度數(shù)是________度;該小區(qū)有3000名居民,請估計對“廣場舞”表示贊同(包括A類和B類)的大約有________人.
(2)小王想從甲,乙,丙,丁四位居民中隨機選取兩位了解具體情況,請用列表或畫樹狀圖的方法求出恰好同時選中甲和乙兩位居民的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點在坐標(biāo)軸上,A,B,C三點的坐標(biāo)分別為 (0,2),(1,0),(0,-0.5),D為線段AB上-個動點(不與點A,B重合),過B,D,0三點的圓與直線BC交于點E,當(dāng)△OED面積取得最小值時,ED的長為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=-x2+mx的對稱軸為直線x=2,若關(guān)于x的-元二次方程-x2+mx-t=0 (t為實數(shù))在l<x<3的范圍內(nèi)有解,則t的取值范圍是( )
A.-5<t≤4 B.3<t≤4 C.-5<t<3 D.t>-5
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABOC的頂點B,C在反比例函數(shù)y=(x>O)的圖象上,點A在反比例函數(shù)y=(k>O)的圖象上,若點B的坐標(biāo)為(1,2),∠OBC=90°,則k的值為( )
A. B.3 C.5 D.12.5
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,A(0,8),B(4,0),直線y=﹣x沿x軸作平移運動,平移時交OA于D,交OB于C.
(1)當(dāng)直線y=﹣x從點O出發(fā)以1單位長度/s的速度勻速沿x軸正方向平移,平移到達點B時結(jié)束運動,過點D作DE⊥y軸交AB于點E,連接CE,設(shè)運動時間為t(s).
①是否存在t值,使得△CDE是以CD為腰的等腰三角形?如果能,請直接寫出相應(yīng)的t值;如果不能,請說明理由.
②將△CDE沿DE翻折后得到△FDE,設(shè)△EDF與△ADE重疊部分的面積為y(單位長度的平方).求y關(guān)于t的函數(shù)關(guān)系式及相應(yīng)的t的取值范圍;
(2)若點M是AB的中點,將MC繞點M順時針旋轉(zhuǎn)90°得到MN,連接AN,請直接寫出AN+MN的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)△ABC,點P是平面內(nèi)的任意一點(A、B、C三點除外),若點P與點A、B、C中任意兩點的連線的夾角為直角時,則稱點P為△ABC的一個勾股點.
(1)如圖1,若點P是△ABC內(nèi)一點,∠A=50°,∠ACP=10°,∠ABP=30°,試說明點P是△ABC的一個勾股點.
(2)如圖2,Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D是AB的中點,點P在射線CD上,若點P是△ABC的勾股點,則CP= ;
(3)如圖3,四邊形ABDC中,DB=DA,∠BCD=45°,AC=,CD=3.則點D能否是△ABC的勾股點,若能,求出BC的長:若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC交AC于點E,AC的反向延長線交⊙O于點F.
(1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若∠C=30°,⊙O的半徑為6,求弓形AF的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】為增強學(xué)生體質(zhì),某中學(xué)在體育課中加強了學(xué)生的長跑訓(xùn)練.在一次男子1000米耐力測試中,小明和小亮同時起跑,同時到達終點;所跑的路程S(米)與所用的時間t(秒)之間的函數(shù)圖象如圖所示:
(1)當(dāng)80≤t≤180時,求小明所跑的路程S(米)與所用的時間t(秒)之間的函數(shù)表達式;
(2)求他們第一次相遇的時間是起跑后的第幾秒?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com