科目: 來源: 題型:
【題目】如圖,直線x=t與反比例函數y=,y=﹣的圖象交于點A,B,直線y=2t與反比例y=,y=﹣的圖象交于點C,D,其中常數t,k均大于0.點P,Q分別是x軸、y軸上任意點,若S△PCD=S1,S△ABQ=S2.則下列結論正確的是( 。
A.S1=2tB.S2=4kC.S1=2S2D.S1=S2
查看答案和解析>>
科目: 來源: 題型:
【題目】若矩形的一個短邊與長邊的比值為,(黃金分割數),我們把這樣的矩形叫做黃金矩形
(1)操作:請你在如圖所示的黃金矩形ABCD(AB>AD)中,以短邊AD為一邊作正方形AEFD.
(2)探究:在(1)中的四邊形EBCF是不是黃金矩形?若是,請予以證明;若不是,請說明理由.
(3)歸納:通過上述操作及探究,請概括出具體有一般性的結論(不需證明)
查看答案和解析>>
科目: 來源: 題型:
【題目】小明想利用太陽光測量樓高,他帶著皮尺來到一棟樓下,發(fā)現對面墻上有這棟樓的影子,針對這種情況,他設計了一種測量方案,具體測量情況如下:如示意圖,小明邊移動邊觀察,發(fā)現站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點A、E、C在同一直線上).已知小明的身高EF是1.7m,請你幫小明求出樓高AB(結果精確到0.1m).
查看答案和解析>>
科目: 來源: 題型:
【題目】某商店購進600個旅游紀念品,進價為每個6元,第一周以每個10元的價格售出200個,第二周若按每個10元的價格銷售仍可售出200個,但商店為了適當增加銷量,決定降價銷售(根據市場調查,單價每降低1元,可多售出50個,但售價不得低于進價),單價降低x元銷售銷售一周后,商店對剩余旅游紀念品清倉處理,以每個4元的價格全部售出,如果這批旅游紀念品共獲利1250元,問第二周每個旅游紀念品的銷售價格為多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,有不重合的兩個點Q(x1,y1)與P(x2,y2).若Q,P為某個直角三角形的兩個銳角頂點,且該直角三角形的直角邊均與x軸或y軸平行(或重合),則我們將該直角三角形的兩條直角邊的邊長之和稱為點Q與點P之間的“折距”,記做DPQ.特別地,當PQ與某條坐標軸平行(或重合)時,線段PQ的長即點Q與點P之間的“折距”.例如,在圖1中,點P(1,-1),點Q(3,-2),此時點Q與點P之間的“折距”DPQ=3.
(1)①已知O為坐標原點,點A(3,-2),B(-1,0),則DAO=______,DBO=______.
②點C在直線y=-x+4上,請你求出DCO的最小值.
(2)點E是以原點O為圓心,1為半徑的圓上的一個動點,點F是直線y=3x+6上以動點.請你直接寫出點E與點F之間“折距”DEF的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】正方形ABCD的邊長為3,點E,F分別在射線DC,DA上運動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.
(1)如圖1,若點E是DC的中點,CH與AB之間的數量關系是 ;
(2)如圖2,當點E在DC邊上且不是DC的中點時,(1)中的結論是否成立?若成立給出證明;若不成立,說明理由;
(3)如圖3,當點E,F分別在射線DC,DA上運動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線M:y=ax2-4ax+a-1(a≠0)與x軸交于A,B兩點(點A在點B左側),拋物線的頂點為D.
(1)拋物線M的對稱軸是直線______;
(2)當AB=2時,求拋物線M的函數表達式以及頂點D的坐標;
(3)在(2)的條件下,直線l:y=kx+b(k≠0)經過拋物線的頂點D,直線y=n與拋物線M有兩個公共點,它們的橫坐標分別記為x1,x2,直線y=n與直線l的交點的橫坐標記為x3(x3<4),若當-2≤n≤-1時,總有x1-x3<x3-x2<0,請結合函數的圖象,直接寫出k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,半圓O的直徑AB=5cm,點M在AB上且AM=1cm,點P是半圓O上的動點,過點B作BQ⊥PM交PM(或PM的延長線)于點Q.設PM=xcm,BQ=ycm.(當點P與點A或點B重合時,y的值為0)小石根據學習函數的經驗,對函數y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小石的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm | 0 | 3.7 | ______ | 3.8 | 3.3 | 2.5 | ______ |
(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象;
(3)結合畫出的函數圖象,解決問題:當BQ與直徑AB所夾的銳角為60°時,PM的長度約為______cm.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com