9.設(shè)函數(shù)f(x)=-4x+2x+1-1,g(x)=lg(ax2-4x+1),若對任意x1∈R,都存在x2∈R,使f(x1)=g(x2),則實數(shù)a的取值范圍為( 。
A.(0,4]B.(-∞,4]C.(-4,0]D.[4,+∞)

分析 由題意求出f(x)的值域,再把對任意x1∈R,都存在x2∈R,使f(x1)=g(x2)轉(zhuǎn)化為函數(shù)g(x)的值域包含f(x)的值域,進(jìn)一步轉(zhuǎn)化為關(guān)于a的不等式組求解.

解答 解:∵f(x)=-4x+2x+1-1=-(2x2+2×2x-1=-(2x-1)2≤-1,
∴?x1∈R,f(x)=-4x+2x+1-1∈(-∞,-1],
∵?x2∈R,使f(x1)=g(x2),
∴g(x)=lg(ax2-4x+1)的值域包含(-∞,-1],
當(dāng)a=0時,g(x)=lg(-4x+1),不成立;
當(dāng)a≠0時,要使g(x)=lg(ax2-4x+1)的值域包含(-∞,-1],
則ax2-4x+1≥0的解集是R,
∴$\left\{\begin{array}{l}{a>0}\\{△=16-4a≤0}\end{array}\right.$,解得a≥4.
∴實數(shù)a的取值范圍是[4,+∞).
故選:D.

點評 本題考查函數(shù)的值域,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,正確理解題意是解答該題的關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{\frac{1}{x},x≥1}\\{{x^3},x<1}\end{array}}$,若關(guān)于x的方程f(x)=k(x+1)有兩個不同的實根,則實數(shù)k的取值范圍是(0,$\frac{1}{2}$)∪($\frac{27}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=$\frac{x}{x-1}$(x≥3)的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若集合P={x|log2x<2},Q={1,2,3},則P∩Q=(  )
A.{1,2}B.{1}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}-lnx,x>0\\{x^2}+1,x<0\end{array}$,則f[f(e)]的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)全集U=R,集合M={x|0<x≤1},N={x|x≤0},則M∩(∁UN)={x|0<x≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=x+$\frac{4}{x-3}$,x∈(3,+∞)的最小值為(  )
A.3B.4C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在正項數(shù)列{an}中,a1=2,且點($\sqrt{a_n}$,$\sqrt{{a_{n-1}}}$)在直線x-$\sqrt{2}$y=0上,則前n項和Sn等于(  )
A.2n-1B.2n+1-2C.${2^{\frac{n}{2}}}-\sqrt{2}$D.${2^{\frac{n-2}{2}}}-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)$f(x)=3sin({2x+\frac{π}{3}})$的圖象向右平移$\frac{π}{2}$個單位長度,所得圖象對應(yīng)的函數(shù)( 。
A.其中一條對稱軸方程為$x=-\frac{π}{6}$B.在區(qū)間$[{\frac{π}{12},\frac{7π}{12}}]$上單調(diào)遞增
C.當(dāng)$x=\frac{π}{12}+kπ({k∈Z})$時取得最大值D.在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊答案