【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)說明理由;
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長BD交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=時(shí),求線段DH的長.
【答案】(1)BD=CF;(2)①證明見解析;②.
【解析】分析:(1)根據(jù)旋轉(zhuǎn)變換的性質(zhì)和全等三角形的判定定理證明△CAF≌△BAD,證明結(jié)論;
(2)①根據(jù)全等三角形的性質(zhì)、垂直的定義證明即可;
②連接DF,延長AB交DF于M,根據(jù)題意和等腰直角三角形的性質(zhì)求出DM、BM的長,根據(jù)勾股定理求出BD的長,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可得到答案.
(1)BD=CF.
理由如下:由題意得,∠CAF=∠BAD=θ,在△CAF和△BAD中,∵CA=BA,∠CAF=∠BAD,F(xiàn)A=DA,∴△CAF≌△BAD,∴BD=CF;
(2)①由(1)得△CAF≌△BAD,∴∠CFA=∠BDA,∵∠FNH=∠DNA,∠DNA+∠NAD=90°,∴∠CFA+∠FNH=90°,∴∠FHN=90°,即BD⊥CF;
②連接DF,延長AB交DF于M,∵四邊形ADEF是正方形,AD=,AB=2,∴AM=DM=3,BM=AM﹣AB=1,∵△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,∴∠BAD=45°,∴AM⊥DF,∴DB==,∵∠MAD=∠MDA=45°,∴∠AMD=90°,又∠DHF=90°,∠MDB=∠HDF,∴△DMB∽△DHF,∴,即,解得,DH=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,點(diǎn)M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M,N是線段AB的勾股分割點(diǎn).
(1)已知點(diǎn)M,N是線段AB的勾股分割點(diǎn),若AM=2,MN=3,求BN的長;
(2)如圖2,在△ABC中,F(xiàn)G是中位線,點(diǎn)D,E是線段BC的勾股分割點(diǎn),且EC>DE≥BD,連接AD,AE分別交FG于點(diǎn)M,N,求證:點(diǎn)M,N是線段FG的勾股分割點(diǎn);
(3)已知點(diǎn)C是線段AB上的一定點(diǎn),其位置如圖3所示,請(qǐng)?jiān)贐C上畫一點(diǎn)D,使點(diǎn)C,D是線段AB的勾股分割點(diǎn)(要求尺規(guī)作圖,保留作圖痕跡,畫一種情形即可);
(4)如圖4,已知點(diǎn)M,N是線段AB的勾股分割點(diǎn),MN>AM≥BN,△AMC,△MND和△NBE均為等邊三角形,AE分別交CM,DM,DN于點(diǎn)F,G,H,若H是DN的中點(diǎn),試探究,和的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級(jí)實(shí)行小組合作學(xué)習(xí),為了解學(xué)生課堂發(fā)言情況,隨機(jī)抽取該年級(jí)部分學(xué)生,對(duì)他們每天在課堂中發(fā)言的次數(shù)進(jìn)行調(diào)查和統(tǒng)計(jì),統(tǒng)計(jì)表如下,并繪制了兩幅不完整的統(tǒng)計(jì)圖(如圖所示).已知A、B兩組發(fā)言人數(shù)直方圖高度比為1∶5,請(qǐng)結(jié)合圖中相關(guān)的數(shù)據(jù)回答下列問題:
發(fā)言次數(shù)n | |
A | 0≤n<5 |
B | 5≤n<10 |
C | 10≤n<15 |
D | 15≤n<20 |
E | 20≤n<25 |
F | 25≤n<30 |
(1)A組的人數(shù)是多少?本次調(diào)查的樣本容量是多少?
(2)求出C組的人數(shù),并補(bǔ)全直方圖;
(3)該校七年級(jí)共有250人.請(qǐng)估計(jì)全年級(jí)每天在課堂中發(fā)言次數(shù)不少于15次的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人的錢包內(nèi)有10元錢、20元錢和50元錢的紙幣各1張,從中隨機(jī)取出2張紙幣.
(1)求取出紙幣的總額是30元的概率;
(2)求取出紙幣的總額可購買一件51元的商品的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O1、⊙O2的半徑分別為3cm、5cm,且它們的圓心距為8cm,則⊙O1與⊙O2的位置關(guān)系是( )
A.外切
B.相交
C.內(nèi)切
D.內(nèi)含
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)商欲將一批水果由A地運(yùn)往B地,汽車貨運(yùn)公司和鐵路貨運(yùn)公司均開辦此項(xiàng)運(yùn)輸業(yè)務(wù),設(shè)運(yùn)輸過程中的損耗均為200元每小時(shí),兩貨運(yùn)公司的收費(fèi)項(xiàng):目及收費(fèi)標(biāo)準(zhǔn)如下表所示:
運(yùn)輸工具 | 途中平均速度 | 運(yùn)費(fèi) | 裝卸費(fèi)用 |
汽車 | 80 | 20 | 900 |
火車 | 100 | 15 | 2000 |
(1)設(shè)該兩地間的距離為x千米,若汽車貨運(yùn)公司和鐵路貨運(yùn)公司的總費(fèi)用分別為y1(元)和y2(元),則y1=元,y2=元;(用含x的代數(shù)式表示y1和y2)
(2)如果汽車的總費(fèi)用比火車的總費(fèi)用多l(xiāng)l00元,求A,B兩地的距離為多少千米?
(3)若兩地間距離為200千米,且火車、汽車在路上耽誤的時(shí)間分別為2小時(shí)和3.1小時(shí),若你是經(jīng)理,選擇哪種運(yùn)輸方式更合算些?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在頻數(shù)分布直方圖中,有11個(gè)小長方形,若中間一個(gè)小長方形的面積等于其它10個(gè)小長方形面積的和的 ,且數(shù)據(jù)有160個(gè),則中間一組的頻數(shù)為( )
A.32
B.0.2
C.40
D.0.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(3-k)x-2k2+18
(1)k為何值時(shí),函數(shù)為一次函數(shù);
(2)k為何值時(shí),它的圖像經(jīng)過原點(diǎn)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com